Skip to main content

Nutrient Transformations

  • Chapter
Book cover Methods in Ecosystem Science

Abstract

A question often asked in ecosystem studies is: What controls rates of release of plant-available nutrients? Nutrient elements are converted from unavailable to available forms through a wide variety of transformation processes (Stevenson 1986; Schlesinger 1991); however, there are some general cycling patterns that are common to all nutrients (Fig. 14.1). For example, most plant macronutrients exist in both organic and mineral forms. Therefore, the processes of mineralization (conversion of organic to mineral forms) and assimilation (conversion of mineral to organic forms) are common to these nutrients. Other nutrients also form insoluble compounds and, thus, dissolution and precipitation processes represent important pathways for release and immobilization of plant-available forms. While procedures used to measure concentrations of different nutrients vary considerably, the approaches used to measure these transformation rates are generally quite similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D.; Melillo, J.M. Terrestrial ecosystems. San Francisco: Saunders; 1991.

    Google Scholar 

  • Anderson, J.P.E.; Domsch, K.H. Measurement of bacterial and fungal contributions to respiration of selected agricultural soils. Arch. Microbiol. 21:314–322; 1975.

    CAS  Google Scholar 

  • Balderston, W.L.; Sherr, B.; Payne, W.J. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Environ. Microbiol. 31:504–508; 1976.

    PubMed  CAS  Google Scholar 

  • Barraclough, D.; Smith M.J. The estimation of mineralization, immobilization and nitrification in nitrogen-15 field experiments using computer simulation. J. Soil Sci. 38:519–530; 1987.

    Article  CAS  Google Scholar 

  • Barrie, A.; Davies, J.E.; Park, A.J.; Workman, C.T. Continuous-flow stable isotope analysis for biologists. Spectroscopy 4:44–52; 1989.

    Google Scholar 

  • Bedard, C.; Knowles, R. Physiology, biochemistry, and specific inhibitors of CH4, , and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53:68–84; 1989.

    PubMed  CAS  Google Scholar 

  • Belser, L.W.; Mays, E.L. Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Appl. Environ. Microbiol. 39:505–510; 1980.

    PubMed  CAS  Google Scholar 

  • Berg, P.; Klemedtsson, L.; Rosswall, T. Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biol. Biochem. 14:301–303; 1982.

    Article  CAS  Google Scholar 

  • Berntson, G.M.; Aber, J.D. Fast nitrate immobilization in N saturated temperate forest soils. Soil Biol. Biochem. 32:151–156; 2000.

    Article  CAS  Google Scholar 

  • Betlach, M.R.; Tiedje, J.M.; Firestone, R.B. Assimilatory nitrate uptake in Pseudomonas fluorescens studied using nitrogen-13. Arch. Microbiol. 129:135–140; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Binkley, D.; Bell, R.; Sollins, P. Comparison of methods for estimating soil nitrogen transformations in adjacent conifer and alder-conifer forests. Can. J. For. Res. 22:858–863; 1992a.

    Article  CAS  Google Scholar 

  • Binkley, D.; Hart, S.C. The components of nitrogen availability assessments in forest soils. Adv. Soil Sci. 10:57–112; 1989.

    Article  CAS  Google Scholar 

  • Binkley, D.; Matson, P. Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Sci. Soc. Am. J. 47:1050–1052; 1983.

    Article  CAS  Google Scholar 

  • Binkley, D.; Sollins, P.; Bell, R.; Sachs, D.; Myrold, D. Biogeochemistry of adjacent conifer and alder-conifer stands. Ecol. 73:2022–2033; 1992b.

    Article  CAS  Google Scholar 

  • Bjarnason, S. Calculation of gross nitrogen immobilization and mineralization in soil. J. Soil Sci. 39:393–406; 1988.

    Article  Google Scholar 

  • Blackburn, T.H. Method for measuring rates of turnover in anoxic marine sediments Appl. Environ. Microbiol. 37:760–765; 1979.

    CAS  Google Scholar 

  • Boring, L.R.; Swank, W.T.; Waide, J.B.; Henderson, G.S. Sources, fates, and impacts of nitrogen inputs to terrestrial ecosystems: Review and synthesis. Biogeochemistry 6:119–159; 1988.

    Article  CAS  Google Scholar 

  • Bormann, F.H.; Likens, G.E.; Melillo, J.M. Nitrogen budget for an aggrading northern hardwood forest ecosystem. Science 196:981–983; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Bremner, J.M. Nitrogen-urea. In: Page, A.L., ed. Methods of Soil Analysis. Part 2. 2nd ed. Madison, WI: American Society of Agronomy; 1982:699–709.

    Google Scholar 

  • Burge, W.D.; Broadbent, F.E. Fixation of ammonia by organic soils. Soil Sci. Soc. Am. Proc. 25:199–204; 1961.

    Article  CAS  Google Scholar 

  • Davidson, E.A.; Hart, S.C.; Firestone, M.K. Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148–1156; 1992.

    Article  Google Scholar 

  • Davidson, E.A.; Hart, S.C.; Shanks, C.A.; Firestone, M.K. Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J. Soil Sci. 42:335–349; 1991.

    Article  CAS  Google Scholar 

  • Davidson, E.A.; Stark, J.M.; Firestone, M.K. Microbial production and consumption of nitrate in an annual grassland. Ecology 71:1968–1975; 1990.

    Article  Google Scholar 

  • Di Stefano, J; Gholz, H. A proposed use of ion exchange resin to measure nitrogen mineralization and nitrification in intact soil cores. Comm. Soil Sci. Plant Anal. 17:989–998; 1986.

    Article  Google Scholar 

  • Echevarria, G.; Morel, J.L.; Fardeau, J.C.; Leclerc-Cessac, E. Assessment of phytoavailability of nickel in soils. J. Environ. Qual. 27:1064–1070; 1998.

    Article  CAS  Google Scholar 

  • Eno, C.F. Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci. Soc. Proc. 24:277–279; 1960.

    Article  CAS  Google Scholar 

  • Frossard, E.; Sinaj, S. The isotope exchange kinetic technique: A method to describe the availability of inorganic nutrients. Applications to K, P, S and Zn. Isotop Environ. Health Stud. 33:61–77; 1997.

    Article  CAS  Google Scholar 

  • Genetet, I.; Martin, F.; Stewart, G.R. Nitrogen assimilation in mycorrhizas: Ammonium assimilation in the N-starved ectomycorrhizal fungus Cenococcum graniforme. Plant Physiol. 76:395–399; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, D.J. Spatial and temporal heterogeneity in soil nutrient supply measured using in situ ion-exchange resin bags. Plant Soil 96:445–450; 1986.

    Article  CAS  Google Scholar 

  • Glibert, P.M.; Lipschultz, F.; McCarthy, J.J.; Altabet, M.A. Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol. Oceanogr. 27:639–650; 1982.

    Article  CAS  Google Scholar 

  • Gordon, A.; Tallas, M.; Van Cleve, K. Soil incubations in polyethylene bags: Effect of bag thickness and temperature on nitrogen transformations and CO2 permeability. Can. J. Soil Sci. 67:65–75; 1987.

    Article  CAS  Google Scholar 

  • Handley, L.L.; Raven, J.A. The use of natural abundance of nitrogen isotopes in plant physiology and Ecology. Plant Cell Environ. 15:965–985; 1992.

    Article  CAS  Google Scholar 

  • Hart, S.C.; Firestone, M.K. Evaluation of three in situ soil nitrogen availability assays. Can. J. For. Res. 19:185–191; 1989.

    Article  Google Scholar 

  • Hart, S.C.; Nason, G.E.; Myrold, D.D.; Perry, D.A. Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection. Ecology 75:880–891; 1994a.

    Article  Google Scholar 

  • Hart, S.C.; Stark, J.M.; Davidson, E.A.; Firestone, M.K. Nitrogen mineralization, immobilization, and nitrification. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 985–1018; 1994b.

    Google Scholar 

  • He, Z.L.; Zhu, J. Transformation kinetics and potential availability of specifically-sorbed phosphate in soils. Nutr. cycl. agroecosyst. 51:209–215; 1998.

    Article  CAS  Google Scholar 

  • Herman, D.J.; Rundel, P.W. Nitrogen isotope fractionation in burned and unburned chaparral soils. Soil Sci. Soc. Am. J. 53:1229–1236; 1989.

    Article  Google Scholar 

  • Kirkham, D.; Bartholomew, W.V. Equations for followin nutrient transformations in soils, utilizing tracer data. Soil Sci. Soc. Proc. 18:33–34; 1954.

    Article  CAS  Google Scholar 

  • Klubek, B.; Skujins, J. Gaseous nitrogen losses from 15N-ammonium and plant material amended great basin desert surface soils. Geomicrobiol. J. 2:225–236; 1981.

    Article  CAS  Google Scholar 

  • Knowles, R.; Blackburn, T.H. Nitrogen isotope techniques. San Diego: Academic; 1993.

    Google Scholar 

  • Kuo, S. Phosphorus. In: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E., eds. Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI: Soil Science Society of America; 3:869–919; 1996.

    Google Scholar 

  • Ladha, J.K.; Peoples, M.B.; Garrity, D.P.; Capuno, V.T.; Dart, P.J. Estimating dinitrogen fixation of hedgerow vegetation using the nitrogen-15 natural abundance method. Soil Sci. Soc. Am. J. 57:732–737; 1993.

    Article  CAS  Google Scholar 

  • Lajtha, K.; Michener, R., eds. Stable Isotopes in Ecology. Oxford: Blackwell; 1994.

    Google Scholar 

  • Low, A.P.; Stark, J.M.; Dudley, L.M. Effects of soil osmotic potential on nitrification, ammonification, N-assimilation, and nitrous oxide production. Soil Sci. 162:16-27; 1997.

    Google Scholar 

  • Lynch, J.M.; Whipps, J.M. Substrate flow in the rhizosphere. Plant Soil 129:1–10; 1990.

    Article  CAS  Google Scholar 

  • Mary, B.; Recous, S.; Robin, D. A model for calculating nitrogen fluxes in soil using 15N tracing. Soil Biol. Biochem. 30:1963–1979; 1998.

    Article  CAS  Google Scholar 

  • Milchunas, D.G.; Lauenroth, W.K. Carbon dynamics and estimates of primary production by harvest, 14C dilution, and 14C turnover. Ecology 73:593–607; 1992.

    Article  Google Scholar 

  • Mosier, A.R.; Klemedtsson, L. Measuring denitrification in the field. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 1047–1066; 1994.

    Google Scholar 

  • Myrold, D.D.; Tiedje, J.M. Simultaneous estimation of several nitrogen cycle rates using 15N: theory and application. Soil Biol. Biochem. 18:559–568; 1986.

    Article  CAS  Google Scholar 

  • Nadelhoffer, K.J.; Aber, J.D.; Melillo, J.M. Seasonal patterns of ammonium and nitrate uptake in nine temperate forest ecosystems. Plant Soil 80:321–335; 1984.

    Article  CAS  Google Scholar 

  • Nohrstedt, H.-O. Natural formation of ethylene in forest soils and methods to correct results given by the acetylene-reduction assay. Soil Biol. Biochem. 15:281–286; 1983.

    Article  CAS  Google Scholar 

  • Nommik, H.; Vahtras, K. Retention and fixation of ammonium and ammonia in soils. In: Stevenson, F.J., ed. Nitrogen in Agricultural Soils. Madison, WI: American Society of Agronomy; 1982:123–171.

    Google Scholar 

  • Oremland, R.S.; Capone, D.G. Use of “specific” inhibitors in Biogeochemistry and microbial Ecology. Adv. Microbial Ecol. 10:285–383; 1988.

    Article  CAS  Google Scholar 

  • Oremland, R.S.; Culbertson, C.W. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation. Appl. Environ. Microb. 58:2983–2992; 1992.

    CAS  Google Scholar 

  • Peterjohn, W.T.; Schlesinger, W.H. Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10:67–79; 1990.

    Article  Google Scholar 

  • Pichtel, J.R.; Dick, W.A. Influence of biological inhibitors on the oxidation of pyritic mine spoil. Soil Biol. Biochem. 23:109–116; 1991.

    Article  CAS  Google Scholar 

  • Raich, J.W.; Nadelhoffer, K.J. Belowground carbon allocation in forest ecosystems: Global trends. Ecology 70:1346–1354; 1989.

    Article  Google Scholar 

  • Rice, C.W.; Tiedje, J.M. Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil. Biol. Biochem. 21:597–602; 1989.

    Article  CAS  Google Scholar 

  • Robertson, G.P.; Vitousek, P.M. Nitrification potentials in primary and secondary succession. Ecol. 62:376–386; 1981.

    Article  Google Scholar 

  • Rudolph, J.; Koschorreck, M.; Conrad, R. Oxidative and reductive microbial consumption of nitric oxide in a heathland soil. Soil Biol. Biochem. 28:1389–1396; 1996.

    Article  CAS  Google Scholar 

  • Scheu, S.; Parkinson, D. Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Boil. Biochem. 26:1515–1525; 1994.

    Article  CAS  Google Scholar 

  • Schimel, D.S. Theory and Application of Tracers. San Diego, CA: Academic; 1993.

    Google Scholar 

  • Schimel, J.P. Assumptions and errors in the pool dilution technique for measuring mineralization and immobilization. Soil Biol. Biochem. 28:827–828; 1996.

    Article  CAS  Google Scholar 

  • Schimel, J.P.; Firestone, M.K. Inorganic N incorporation by coniferous forst floor material. Soil Biol. Biochem. 21:41–46; 1989.

    Article  Google Scholar 

  • Schimel, J.P.; Firestone, M.K.; Killham, K.S. Identification of heterotrophic nitrification in a sierran forest soil. Appl. Environ. Microbiol. 48:802–806; 1984.

    PubMed  CAS  Google Scholar 

  • Schimel, J.P.; Jackson, L.E.; Firestone, M.K. Spatial and temporal effects on plant-microbial competition for inorganic nitrogen in a California grassland. Soil Biol. Biochem. 21:1059–1066; 1989.

    Article  CAS  Google Scholar 

  • Schlesinger, W.H. Biogeochemistry: An Analysis of Global Change. San Diego, CA: Academic; 1991.

    Google Scholar 

  • Schlesinger, W.H.; Peterjohn, W.T. Processes controlling ammonia volatilization from Chihuahuan desert soils. Soil Biol. Biochem. 23:637–642; 1991.

    Article  Google Scholar 

  • Shearer, G.; Duffy, J.; Kohl, D.H.; Commoner, B. A steady-state model of isotopic fractionation accompanying nitrogen transformations in soil. Soil Sci. Soc. Am. Proc. 38:315–322; 1974.

    Article  CAS  Google Scholar 

  • Shearer, G.; Kohl, D.H. N2-fixation in field settings: Estimations based on natural 15N abundance. Aust. J. Plant Physiol. 13:699–756; 1986.

    CAS  Google Scholar 

  • Shearer, G.; Kohl, D.H.; Chien, S.H. The nitrogen-15 abundance in a wide variety of soils. Soil Sci. Soc. Am J. 42:899–902; 1978.

    Article  CAS  Google Scholar 

  • Sibbeson, E.A. Simple ion-exchange resin procedure for extracting plant available elements from soil. Plant Soil 46:665–669; 1977.

    Article  Google Scholar 

  • Sinaj, S.; Frossard, E.; Fardeau, J.C. Isotopically exchangeable phosphate in size fractionated and unfractionated soils. Soil Sci. Soc. Am. J. 61:1413-1417; 1997.

    Google Scholar 

  • Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E., eds. Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI: Soil Science Society of America; 1996.

    Google Scholar 

  • Stanford, G.; Smith, S.J. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. Proc. 36:465–472; 1972.

    Article  CAS  Google Scholar 

  • Stark, J.M.; Firestone, M.K. Isotopic labeling of soil nitrate pools using nitrogen-15-nitric oxide gas. Soil Sci. Soc. Am. J. 59:844–847; 1995.

    Article  CAS  Google Scholar 

  • Stark, J.M.; Firestone, M.K. Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biol. Biochem. 28:1307–1317; 1996.

    Article  CAS  Google Scholar 

  • Stark, J.M.; Hart, S.C. Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci. Soc. Am. J. 60:1846–1855; 1996.

    Article  CAS  Google Scholar 

  • Stark, J.M.; Hart, S.C. High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:61–64; 1997.

    Article  CAS  Google Scholar 

  • Steffens, D.; Sparks, D.L. Kinetics of nonexchangeable ammonium release from soils. Soil Sci. Soc. Am. J. 61:455–462; 1997.

    Article  CAS  Google Scholar 

  • Stevenson, F.J. Cycles of soil. New York: Wiley; 1986.

    Google Scholar 

  • Subler, S.; Blair, J.M.; Edwards, CA. Using anion exchange membranes to measure soil nitrate availability and net nitrification. Soil Biol. Biochem. 27:911–917; 1995.

    Article  CAS  Google Scholar 

  • Tabatabai, M.A. Soil enzymes. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 2:775–834; 1994.

    Google Scholar 

  • Tann, C.C.; Skujins, J. Soil nitrogenase assay by 14C-acetylene reduction: Comparison with the carbon monoxide inhibition method. Soil Biol. Biochem. 17:109–112; 1985.

    Article  CAS  Google Scholar 

  • Tiedje, J.M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In Zehnder, A.J.B., ed. Biology of Anaerobic Microorganisms. New York: Wiley; 1988:179–244.

    Google Scholar 

  • Tietema, A.; Van Dam, D. Calculating microbial carbon and nitrogen transformations in acid forest litter with 15N enrichment and dynamic simulation modelling. Soil Biol. Biochem. 28:953–965; 1996.

    Article  CAS  Google Scholar 

  • Van Cleve, K.; Coyne, P.I.; Goodwin, E.; Johnson, C.; Kelley, M. A comparison of four methods for measuring respiration in organic material. Soil Biol. Biochem. 11:237–246; 1979.

    Article  Google Scholar 

  • Vitousek, P.M.; Andariese, S.W. Microbial transformations of labeled nitrogen in a clear-cut pine plantation. Oecologia 68:601–605; 1986.

    Article  Google Scholar 

  • Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., editors. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 1994.

    Google Scholar 

  • Weaver, R.W.; Danso, S.K.A. Dinitrogen fixation. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 2:1019–1046; 1994.

    Google Scholar 

  • Wolf, D.C.; Legg, J.O.; Boutton, T.W. Isotopic methods for the study of soil organic matter dynamics. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 2:865–906; 1994.

    Google Scholar 

  • Wolf, D.C.; Skipper, H.D. Soil sterilization. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 2:41–52; 1994.

    Google Scholar 

  • Zou, X.; Valentine, D.W.; Sanford, R.L., Jr.; Binkley, D. Resin-core and buried-bag estimates of nitrogen transformations in Costa Rican lowland rainforests. Plant Soil. 139:275–283; 1992.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stark, J.M. (2000). Nutrient Transformations. In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (eds) Methods in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1224-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1224-9_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98743-9

  • Online ISBN: 978-1-4612-1224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics