Skip to main content

On the Manin constants of modular elliptic curves

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 89))

Abstract

For M a positive integer, let X 0 (M) Q be the modular curve over Q classifying elliptic curves with a given cyclic subgroup of order M and let J 0(M)Q be the jacobian of X 0(M)Q. An elliptic curve E over Q is said to be modular if it is an isogeny factor (isogenics over Q) of some J 0(M)Q; the smallest M for which this happens is then called the level of E. The Shimura-Taniyama conjecture states that every elliptic curve E over Q is modular, and that the level of E equals the conductor of E. A modular elliptic curve of level M is called strong if there exists a closed immersion EJ 0(M)Q. It follows from the multiplicity one principle for modular forms that such an immersion is unique up to sign.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Birch and H.P.F. Swinnerton-Dyer. Elliptic curves and modular functions. Modular functions of one variable IV, 2–32. Springer Lecture Notes in Mathematics 476 (1975).

    Google Scholar 

  2. H. Carayol. Sur les représentations l-adiques associées aux formes modulaires de Hubert. Ann. scient. Éc. Norm. Sup., série 4, t. 19, 409–468 (1986).

    Google Scholar 

  3. P. Deligne and M. Rapoport. Les schémas de modules des courbes elliptiques. Modular functions of one variable II, 143–316. Springer Lecture Notes in Mathematics 349.

    Google Scholar 

  4. S.J. Edixhoven. Minimal resolution and stable reduction of X 0 (N). Preprint Utrecht November 1986, accepted for publication in the Annales de l’Institut Fourier.

    Google Scholar 

  5. S.J. Edixhoven. Stable models of modular curves and applications. Thesis Utrecht June 1989, to be published.

    Google Scholar 

  6. N.M. Katz and B. Mazur. Arithmetic moduli of elliptic curves. Annals of Mathematics Studies 108, Princeton University Press (1985).

    MATH  Google Scholar 

  7. B. Mazur. Rational isogenics of prime degree. Invent. Math. 44, 129–162 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Mazur. Courbes elliptiques et symboles modulaires. Séminaire Bourbaki juin 1972. Springer Lecture Notes in Mathematics 317.

    Google Scholar 

  9. B. Mazur and H.P.F. Swinnerton-Dyer. Arithmetic of Weil curves. Invent. Math. 25, 1–16 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  10. J.-F. Mestre and J. Oesterlé. Letter to B. Gross, May 1985.

    Google Scholar 

  11. F. Oort. Commutative group schemes. Springer Lecture Notes in Mathematics 15 (1966).

    MATH  Google Scholar 

  12. M. Raynaud. Spécialisation du fondeur de Picard. Publications Mathématiques de l’I.H.E.S. 38 (1970).

    Google Scholar 

  13. M. Raynaud. Schémas en groupes de type (p,…,p). Bull. Soc. Math. France 102, 241–280 (1974).

    MathSciNet  MATH  Google Scholar 

  14. G. Stevens. Stickelberger elements and modular parametrizations of elliptic curves. To be published.

    Google Scholar 

  15. J. Tate. Algorithm for determining the type of a singular fibre in an elliptic pencil. In Modular Functions of One Variable IV, 33–52. Springer Lecture Notes in Mathematics 476 (1975).

    Google Scholar 

  16. M. Kenku. On the number of Q-isomorphism classes of elliptic curves in each Q-isogeny class. J. of Number Theory 15, 199–202 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Zagier. Modular parametrizations of elliptic curves. Canad. Math. Bull. 28(3), 372–384 (1985).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edixhoven, B. (1991). On the Manin constants of modular elliptic curves. In: van der Geer, G., Oort, F., Steenbrink, J. (eds) Arithmetic Algebraic Geometry. Progress in Mathematics, vol 89. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0457-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0457-2_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6769-0

  • Online ISBN: 978-1-4612-0457-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics