Skip to main content

Visual-Haptic Compliance Perception

  • Chapter
  • First Online:

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

This chapter deals with the perception of compliance of objects with rigid surfaces when vision is present. Compliance (or its inverse, stiffness) is one of a number of properties that can be called “higher-order,” in the sense that it is computed as a combination of components that are physically independent. For objects having rigid surfaces, the components of compliance are position and force. We consider how each component is conveyed by different sensory modalities used for the interaction, vision and touch. This analysis highlights in particular that vision predominantly contributes to the sensing of position, whereas haptics (active touch) contributes to force sensing. We will further discuss integration of information across the senses; in particular, when such integration occurs in relation to the combination of the components of compliance. Finally, we describe applications of research on multi-modal compliance perception.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barbagli F, Salisbury K, Ho C, Spence C, Tan HZ (2006) Haptic discrimination of force direction and the influence of visual information. ACM Trans Appl Percept 3:125–135

    Article  Google Scholar 

  • Bethea BT, Okamura AM, Kitagawa M, Fitton TP, Cattaneo SM, Gott VL, Baumgartner WA, Yuh DD (2004) Application of haptic feedback to robotic surgery. J Laparoendosc Adv Surg Tech 14(3):191–195

    Article  Google Scholar 

  • Cellini C, Kaim L, Drewing K (2013) Visual and haptic integration in the estimation of softness of deformable objects. Perception 4(8):516–531

    Article  Google Scholar 

  • Curtis DW, Attneave F, Harrington TL (1968) A test of a two-stage model for magnitude estimation. Attention Percept Psychophys 3:25–31

    Article  Google Scholar 

  • Drewing K, Ramisch A, Bayer F (2009) Haptic, visual and visuo-haptic softness judgments for objects with deformable surfaces. In: Proceedings of world haptics 2009, third joint EuroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. Piscataway, NJ, IEEE, pp 640–645

    Google Scholar 

  • Ellis RR, Lederman SJ (1993) The role of haptic versus visual volume cues in the size-weight illusion. Attention Percept Psychophys 55(3):315–324

    Article  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  Google Scholar 

  • Fechner GT (1860) Elemente der Psychophysik. Breitkopf and Härtel, Leipzig, Germany

    Google Scholar 

  • Gepshtein S, Burge J, Ernst MO, Banks MS (2005) The combination of vision and touch depends on spatial proximity. J Vis 5(11):1013–1023

    Article  Google Scholar 

  • Horeman T, Rodrigues SP, van den Dobbelsteen JJ, Jansen FW, Dankelman J (2012) Visual force feedback in laparoscopic training. Surg Endosc 26(1):242–248

    Article  Google Scholar 

  • Jeon S, Choi S (2009) Haptic Augmented reality: taxonomy and an example of stiffness modulation. Presence Teleoperators Virtual Environ 18:387–408

    Article  Google Scholar 

  • Jones LA (1986) Perception of force and weight: theory and research. Psychol Bull 100:29–42

    Article  Google Scholar 

  • Jones LA, Hunter IW (1990) A perceptual analysis of stiffness. Exp Brain Res 79:150–156

    Article  Google Scholar 

  • Keyson DV (2000) Estimation of virtually perceived length. Presence Teleoperators Virtual Environ 9:394–398

    Article  Google Scholar 

  • Klatzky RL, Wu B, Stetten G (2010) The disembodied eye: consequences of displacing perception from action. Vis Res 50:2618–2626

    Article  Google Scholar 

  • Kuschel M, Di Luca M, Buss M, Klatzky RL (2010) Combination and integration in the perception of visual-haptic compliance information. IEEE Trans Haptics 3:234–244

    Article  Google Scholar 

  • Lanca M, Bryant D (1995) Effect of orientation in haptic reproduction of line length. Percept Mot Skills 80:1291–1298

    Article  Google Scholar 

  • Michaels CF, De Vries MM (1998) Higher and lower order variables in the visual perception of relative pulling force. J Exp Psychol Hum Percept Perform 24:526–546

    Article  Google Scholar 

  • Paré M, Carnahan H, Smith AM (2002) Magnitude estimation of tangential force applied to the fingerpad. Exp Brain Res 142:342–348

    Article  Google Scholar 

  • Seizova-Cajic T (1998) Size perception by vision and kinesthesia. Attention Percep Psychophys 60:705–718

    Article  Google Scholar 

  • Shen Y, Zelen M (2001) Screening sensitivity and sojourn time from breast cancer early detection clinical trials: mammograms and physical examinations. J Clin Oncol 19:3490–3499

    Google Scholar 

  • Srinivasan MA, Beauregard GL, Brock DO (1996) The impact of visual information on haptic perception of stiffness in virtual environments. ASME Dyn Syst Control Div 58:555–559

    Google Scholar 

  • Stanley G (1966) Haptic and kinesthetic estimates of length. Psychon Sci 5:377–378

    Article  Google Scholar 

  • Stetten Gl, Wu B, Klatzky R, Galeotti J, Siegel M, Lee R, f Mah F, Eller A, Schuman J, Hollis R (2011) Hand-held force magnifier for surgical instruments. Information processing in computer-assisted interventions. Lecture notes in computer science, 6689, Springer, Berlin. pp 90–100

    Google Scholar 

  • Stevens JC, Mack JD (1959) Scales of apparent force. J Exp Psychol 58:405–413

    Article  Google Scholar 

  • Stevens SS (1975) Psychophysics: introduction to its perceptual, neural, and social prospects. Wiley, New York

    Google Scholar 

  • Sun Y, Hollerbach JM, Mascaro SA (2008) Predicting fingertip forces by imaging coloration changes in the fingernail and surrounding skin. IEEE Trans Biome Eng 55:2363–2371

    Article  Google Scholar 

  • Tan HZ, Durlach NI, Beauregard GL, Srinivasan MA (1995) Manual discrimination of compliance using active pinch grasp: the roles of force and work cues. Attention Percep Psychophys 57:495–510

    Article  Google Scholar 

  • Teghtsoonian M, Teghtsoonian R (1965) Seen and felt length. Psychon Sci 3:465–466

    Article  Google Scholar 

  • Teghtsoonian M, Teghtsoonian R (1970) Two varieties of perceived length. Attention Percept Psychophys 8:389–392

    Article  Google Scholar 

  • Valdez AB, Amazeen EL (2008) Sensory and perceptual interactions in weight perception. Attention Percept Psychophys 70:647–657

    Article  Google Scholar 

  • van Beers RJ, Sittig AC (1999) Integration of proprioceptive and visual position information: an experimentally supported model. J Neurophysiol 81:1355–1364

    Google Scholar 

  • Varadharajan V, Klatzky R, Unger B, Swendsen R, Hollis R (2008) Haptic rendering and psychophysical evaluation of a virtual three-dimensional helical spring. In: Proceedings of the 16th symposium on haptic interfaces for virtual environments and teleoperator systems. IEEE, Piscataway, NJ, pp 57–64

    Google Scholar 

  • Wang X, Ananthasuresh GK, Ostrowski JP (2001) Vision-based sensing of forces in elastic objects. Sens Actuators A Phys 94:142–156

    Article  Google Scholar 

  • White PA (2012) The experience of force: the role of haptic experience of forces in visual perception of object motion and interactions, mental simulation, and motion-related judgments. Psychol Bull 138:589–615

    Article  Google Scholar 

  • Woodworth R, Schlossberg H (1960) Experimental psychology, Revised edn. Henry Holt, New York

    Google Scholar 

  • Wu B, Klatzky RL, Shelton D, Stetten G (2008) Mental concatenation of perceptually and cognitively specified depth to represent locations in near space. Exp Brain Res 184:295–305

    Article  Google Scholar 

  • Wu B, Klatzky RL, Hollis R, Stetten G (2012) Visual perception of viscoelasticity in virtual materials. Presented at the 53rd annual meeting of the psychonomic society, Minneapolis, Minnesota, Nov 2012

    Google Scholar 

  • Wu W, Basdogan C, Srinivasan MA (1999) Visual, haptic, and bimodal perception of size and stiffness in virtual environments. ASME Dyn Syst Control Div 67:19–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta L. Klatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Klatzky, R.L., Wu, B. (2014). Visual-Haptic Compliance Perception. In: Di Luca, M. (eds) Multisensory Softness. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6533-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6533-0_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6532-3

  • Online ISBN: 978-1-4471-6533-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics