Skip to main content

Introduction

  • Chapter
Book cover Snake Robots

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This introductory text describes the motivation and scope of the research activities underlying this book. In particular, the book has been written by researchers at the Norwegian University of Science and Technology (NTNU) and also researchers from the Norwegian research organisation SINTEF. The research was initiated in 2003 based on the idea of a self-propelled fire hose as a robotic tool to aid human firefighters. The idea was, in other words, to turn a fire hose into a water hydraulic snake robot that can move in extreme environments with the agility of a biological snake. The critical and most significant research challenge of this robotic concept was (and still is) the serpentine propulsion mechanism of this system. Over the last years, the research on snake robots at NTNU and SINTEF has therefore targeted snake robot locomotion in general without concern about the specific application of the robot.

The main goal of this book is to increase our basic understanding of snake robot locomotion. To this end, the focus of the book is primarily directed towards control design. Efficient control strategies are vital to future applications of snake robots, and are also instrumental in the development of these mechanisms.

In this introductory chapter, we also present aspects of biological snakes that are relevant to modelling, implementation, and control of snake robots. Moreover, the chapter provides an extensive overview of the snake robot literature which represents a suitable starting point for research in this area. The chapter ends with a summary of each chapter of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SINTEF is a Norwegian research organisation which is tightly coupled with NTNU both geographically and through joint research activities.

References

  • Andruska, A.M., Peterson, K.S.: Control of a snake-like robot in an elastically deformable channel. IEEE/ASME Trans. Mechatron. 13(2), 219–227 (2008)

    Article  Google Scholar 

  • Bauchot, R.: Snakes: a Natural History. Sterling Publishing Company, New York (1994)

    Google Scholar 

  • Bayraktaroglu, Z.Y.: Snake-like locomotion: experimentations with a biologically inspired wheel-less snake robot. Mech. Mach. Theory 44(3), 591–602 (2008)

    Article  Google Scholar 

  • Bayraktaroglu, Z.Y., Blazevic, P.: Understanding snakelike locomotion through a novel push-point approach. J. Dyn. Syst. Meas. Control 127(1), 146–152 (2005)

    Article  Google Scholar 

  • Bloch, A.M., Baillieul, J., Crouch, P., Marsden, J.: Nonholonomic Mechanics and Control. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  • Boyer, F., Porez, M., Khalil, W.: Macro-continuous computed torque algorithm for a three-dimensional eel-like robot. IEEE Trans. Robot. 22(4), 763–775 (2006)

    Article  Google Scholar 

  • Brogliato, B.: Nonsmooth Mechanics, 2nd edn. Springer, London (1999)

    Book  MATH  Google Scholar 

  • Brunete, A., Gambao, E., Torres, J.E., Hernando, M.: A 2 DoF servomotor-based module for pipe inspection modular micro-robots. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1329–1334 (2006)

    Chapter  Google Scholar 

  • Burdick, J.W., Radford, J., Chirikjian, G.S.: A sidewinding locomotion gait for hyper-redundant robots. Adv. Robot. 9(3), 195–216 (1995)

    Article  Google Scholar 

  • Chen, L., Wang, Y., Ma, S., Li, B.: Studies on lateral rolling locomotion of a snake robot. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 5070–5074 (2004)

    Google Scholar 

  • Chen, L., Wang, Y., Li, B., Ma, S., Duan, D.: Study on locomotion of a crawling robot for adaptation to the environment. In: Bioinspiration and Robotics: Walking and Climbing Robots, pp. 301–316. I-Tech Education and Publishing, Vienna (2007)

    Google Scholar 

  • Chen, T.L.T., Liu, S., Yen, J.: A bio-mimetic snake-like robot: sensor based gait control. In: IEEE Workshop on Advanced Robotics and Its Social Impacts, 2008. ARSO 2008, pp. 1–6 (2008)

    Google Scholar 

  • Chernousko, F.: Snake-like locomotions of multilink mechanisms. J. Vib. Control 9(1–2), 235–256 (2003)

    MathSciNet  MATH  Google Scholar 

  • Chernousko, F.: Modelling of snake-like locomotion. Appl. Math. Comput. 164(2), 415–434 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Chirikjian, G.S.: Theory and applications of hyper-redundant robotic manipulators. Ph.D. thesis, California Institute of Technology, Pasadena, CA (1992)

    Google Scholar 

  • Chirikjian, G.S.: Design and analysis of some nonanthropomorphic, biologically inspired robots: an overview. J. Robot. Syst. 18(12), 701–713 (2001)

    Article  MATH  Google Scholar 

  • Chirikjian, G.S., Burdick, J.W.: The kinematics of hyper-redundant robot locomotion. IEEE Trans. Robot. Autom. 11(6), 781–793 (1995)

    Article  Google Scholar 

  • Crespi, A., Ijspeert, A.J.: Online optimization of swimming and crawling in an amphibious snake robot. IEEE Trans. Robot. 24(1), 75–87 (2008)

    Article  Google Scholar 

  • Date, H., Takita, Y.: Control of 3D snake-like locomotive mechanism based on continuum modeling. In: Proc. ASME 2005 Int. Design Engineering Technical Conf., pp. 1351–1359 (2005)

    Google Scholar 

  • Date, H., Takita, Y.: Adaptive locomotion of a snake like robot based on curvature derivatives. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Diego, CA, USA, pp. 3554–3559 (2007)

    Google Scholar 

  • Date, H., Hoshi, Y., Sampei, M.: Locomotion control of a snake-like robot based on dynamic manipulability. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (2000)

    Google Scholar 

  • Date, H., Hoshi, Y., Sampei, M., Shigeki, N.: Locomotion control of a snake robot with constraint force attenuation. In: Proc. American Control Conf., pp. 113–118 (2001a)

    Google Scholar 

  • Date, H., Sampei, M., Nakaura, S.: Control of a snake robot in consideration of constraint force. In: Proc. IEEE Int. Conf. Control Applications, pp. 966–971 (2001b)

    Google Scholar 

  • Dowling, K.: Limbless locomotion: learning to crawl. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 4 (1999)

    Google Scholar 

  • Dowling, K.J.: Limbless locomotion: learning to crawl with a snake robot. Ph.D. thesis, The Robotics Institute, Carnegie Mellon University (1997)

    Google Scholar 

  • Endo, G., Togawa, K., Hirose, S.: Study on self-contained and terrain adaptive active cord mechanism. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 3, pp. 1399–1405 (1999)

    Google Scholar 

  • Fjerdingen, S.A., Mathiassen, J.R., Schumann-Olsen, H., Kyrkjebø, E.: Adaptive snake robot locomotion: a benchmarking facility for experiments. In: European Robotics Symp. 2008, vol. 44, pp. 13–22 (2008)

    Chapter  Google Scholar 

  • Fjerdingen, S.A., Liljebäck, P., Transeth, A.A.: A snake-like robot for internal inspection of complex pipe structures (PIKo). In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, St. Louis, MO, USA, pp. 5665–5671 (2009)

    Google Scholar 

  • Gao, J., Gao, X., Zhu, W., Zhu, J., Wei, B.: Design and research of a new structure rescue snake robot with all body drive system. In: IEEE Int. Conf. Mechatronics and Automation, pp. 119–124 (2008)

    Chapter  Google Scholar 

  • Gonzalez-Gomez, J., Zhang, H., Boemo, E.: Locomotion principles of 1D topology pitch and pitch-yaw-connecting modular robots. In: Bioinspiration and Robotics: Walking and Climbing Robots, pp. 403–428. I-Tech Education and Publishing, Vienna (2007)

    Google Scholar 

  • Gonzalez-Gomez, J., Gonzalez-Quijano, J., Zhang, H., Abderrahim, M.: Toward the sense of touch in snake modular robots for search and rescue operations. In: Proc. ICRA 2010 Workshop “Modular Robots: State of the Art”, pp. 63–68 (2010)

    Google Scholar 

  • Grabec, I.: Control of a creeping snake-like robot. In: Proc. 7th Int. Workshop on Advanced Motion Control, pp. 526–531 (2002)

    Google Scholar 

  • Granosik, G., Borenstein, J., Hansen, M.G.: Serpentine robots for industrial inspection and surveillance. In: Industrial Robotics: Programming, Simulation and Applications, pp. 633–662. Pro Literatur Verlag, Mammendorf (2006)

    Google Scholar 

  • Gray, J.: The mechanism of locomotion in snakes. J. Exp. Biol. 23(2), 101–120 (1946)

    Google Scholar 

  • Greenfield, A., Rizzi, A.A., Choset, H.: Dynamic ambiguities in frictional rigid-body systems with application to climbing via bracing. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 1947–1952 (2005)

    Chapter  Google Scholar 

  • Hara, M., Satomura, S., Fukushima, H., Kamegawa, T., Igarashi, H., Matsuno, F.: Control of a snake-like robot using the screw drive mechanism. In: IEEE Int. Conf. Robotics and Automation, pp. 3883–3888 (2007)

    Google Scholar 

  • Hatton, R.L., Choset, H.: Approximating displacement with the body velocity integral. In: Proc. Robotics: Science and Systems (2009a)

    Google Scholar 

  • Hatton, R.L., Choset, H.: Generating gaits for snake robots by annealed chain fitting and keyframe wave extraction. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 840–845 (2009b)

    Google Scholar 

  • Hatton, R.L., Choset, H.: Sidewinding on slopes. In: IEEE Int. Conf. Robotics and Automation, pp. 691–696 (2010)

    Chapter  Google Scholar 

  • Hicks, G., Ito, K.: A method for determination of optimal gaits with application to a snake-like serial-link structure. IEEE Trans. Autom. Control 50(9), 1291–1306 (2005)

    Article  MathSciNet  Google Scholar 

  • Hicks, G.P.: Modeling and control of a snake-like serial-link structure. Ph.D. thesis, North Carolina State University (2003)

    Google Scholar 

  • Hirose, S.: Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, Oxford (1993)

    Google Scholar 

  • Hu, D., Nirody, J., Scott, T., Shelley, M.: The mechanics of slithering locomotion. In: Proc. National Academy of Sciences, USA, vol. 106, pp. 10081–10085 (2009)

    Google Scholar 

  • Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  • Ishikawa, M.: Iterative feedback control of snake-like robot based on principal fiber bundle modeling. Int. J. Adv. Mechatron. Syst. 1(3), 175–182 (2009)

    Article  Google Scholar 

  • Ishikawa, M., Owaki, K., Shinagawa, M., Sugie, T.: Control of snake-like robot based on nonlinear controllability analysis. In: IEEE Int. Conf. Control Applications, pp. 1134–1139 (2010)

    Google Scholar 

  • Jones, B.A., Walker, I.D.: Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006)

    Article  Google Scholar 

  • Kamegawa, T., Yarnasaki, T., Igarashi, H., Matsuno, F.: Development of the snake-like rescue robot ‘Kohga’. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 5, pp. 5081–5086 (2004)

    Google Scholar 

  • Kamegawa, T., Harada, T., Gofuku, A.: Realization of cylinder climbing locomotion with helical form by a snake robot with passive wheels. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 3067–3072 (2009)

    Google Scholar 

  • Kane, T.R., Lecison, D.A.: Locomotion of snakes: a mechanical ‘explanation’. Int. J. Solids Struct. 37(41), 5829–5837 (2000)

    Article  MATH  Google Scholar 

  • Kanso, E., Marsden, J.E., Rowley, C.W., Melli-Huber, J.B.: Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Sci. 15, 255–289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kelly, S.D., Murray, R.M.: Geometric phases and robotic locomotion. J. Robot. Syst. 12(6), 417–431 (1995)

    Article  MATH  Google Scholar 

  • Kimura, H., Hirose, S.: Development of Genbu: active wheel passive joint articulated mobile robot. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 1, pp. 823–828 (2002)

    Google Scholar 

  • Krishnaprasad, P.S., Tsakiris, D.P.: G-snakes: nonholonomic kinematic chains on lie groups. In: Proc. 33rd IEEE Conf. Decision and Control, Lake Buena Vista, FL, USA, vol. 3, pp. 2955–2960 (1994)

    Google Scholar 

  • Kulali, G., Gevher, M., Erkmen, A., Erkmen, I.: Intelligent gait synthesizer for serpentine robots. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 2, pp. 1513–1518 (2002)

    Google Scholar 

  • Kuwada, A., Wakimoto, S., Suzumori, K., Adomi, Y.: Automatic pipe negotiation control for snake-like robot. In: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, pp. 558–563 (2008)

    Chapter  Google Scholar 

  • Li, J., Shan, J.: Passivity control of underactuated snake-like robots. In: Proc. 7th World Congress on Intelligent Control and Automation, pp. 485–490 (2008)

    Google Scholar 

  • Liljebäck, P., Stavdahl, Ø., Beitnes, A.: SnakeFighter—development of a water hydraulic fire fighting snake robot. In: Proc. IEEE Int. Conf. Control, Automation, Robotics, and Vision (ICARCV), Singapore (2006)

    Google Scholar 

  • Linnemann, R., Paap, K.L., Klaassen, B., Vollmer, J.: Motion control of a snakelike robot. In: Proc. Third European Workshop on Advanced Mobile Robots, pp. 1–8 (1999)

    Chapter  Google Scholar 

  • Lipkin, K., Brown, I., Choset, H., Rembisz, J., Gianfortoni, P., Naaktgeboren, A.: Differentiable and piecewise differentiable gaits for snake robots. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Diego, CA, USA, pp. 1864–1869 (2007)

    Google Scholar 

  • Ma, S.: Analysis of snake movement forms for realization of snake-like robots. In: Proc. IEEE Int. Conf. Robotics and Automation, Detroit, MI, USA, vol. 4, pp. 3007–3013 (1999)

    Google Scholar 

  • Ma, S.: Analysis of creeping locomotion of a snake-like robot. Adv. Robot. 15(2), 205–224 (2001)

    Article  Google Scholar 

  • Ma, S., Tadokoro, N.: Analysis of creeping locomotion of a snake-like robot on a slope. Auton. Robots 20, 15–23 (2006)

    Article  Google Scholar 

  • Ma, S., Araya, H., Li, L.: Development of a creeping snake-robot. In: Proc. IEEE Int. Symp. Computational Intelligence in Robotics and Automation, pp. 77–82 (2001)

    Google Scholar 

  • Ma, S., Ohmameuda, Y., Inoue, K., Li, B.: Control of a 3-dimensional snake-like robot. In: Proc. IEEE Int. Conf. Robotics and Automation, Taipei, Taiwan, vol. 2, pp. 2067–2072 (2003)

    Google Scholar 

  • Ma, S., Ohmameuda, Y., Inoue, K.: Dynamic analysis of 3-dimensional snake robots. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 767–772 (2004)

    Google Scholar 

  • Masayuki, A., Takayama, T., Hirose, S.: Development of “Souryu-III”: connected crawler vehicle for inspection inside narrow and winding spaces. In: Proc. IEEE Int. Conf. Intelligent Robots and Systems, vol. 1, pp. 52–57 (2004)

    Google Scholar 

  • Matsuno, F., Mogi, K.: Redundancy controllable system and control of snake robots based on kinematic model. In: Proc. IEEE Int. Conf. Decision and Control, vol. 5, pp. 4791–4796 (2000)

    Google Scholar 

  • Matsuno, F., Sato, H.: Trajectory tracking control of snake robots based on dynamic model. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 3029–3034 (2005)

    Chapter  Google Scholar 

  • Matsuno, F., Suenaga, K.: Control of redundant 3D snake robot based on kinematic model. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2061–2066 (2003)

    Google Scholar 

  • Mattison, C.: The Encyclopedia of Snakes. Cassell, London (2002)

    Google Scholar 

  • McIsaac, K.A., Ostrowski, J.P.: Motion planning for anguilliform locomotion. IEEE Trans. Robot. Autom. 19(4), 637–652 (2003a)

    Article  Google Scholar 

  • McIsaac, K.A., Ostrowski, J.P.: A framework for steering dynamic robotic locomotion systems. Int. J. Robot. Res. 22(2), 83–97 (2003b)

    Article  Google Scholar 

  • McKenna, J.C., Anhalt, D.J., Bronson, F.M., Brown, H.B., Schwerin, M., Shammas, E., Choset, H.: Toroidal skin drive for snake robot locomotion. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 1150–1155 (2008)

    Google Scholar 

  • Mehta, V., Brennan, S., Gandhi, F.: Experimentally verified optimal serpentine gait and hyperredundancy of a rigid-link snake robot. IEEE Trans. Robot. 24(2), 348–360 (2008)

    Article  Google Scholar 

  • Melli, J.B., Rowley, C.W., Rufat, D.S.: Motion planning for an articulated body in a perfect planar fluid. SIAM J. Appl. Dyn. Syst. 5(4), 650–669 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, G.: Snake robots for search and rescue. In: Neurotechnology for Biomimetic Robots, pp. 271–284. MIT Press, Cambridge (2002)

    Google Scholar 

  • Moon, B.R., Gans, C.: Kinematics, muscular activity and propulsion in gopher snakes. J. Exp. Biol. 201, 2669–2684 (1998)

    Google Scholar 

  • Morgansen, K.A., Duidam, V., Mason, R.J., Burdick, J.W., Murray, R.M.: Nonlinear control methods for planar carangiform robot fish locomotion. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, pp. 427–434 (2001)

    Google Scholar 

  • Morgansen, K.A., Vela, P.A., Burdick, J.W.: Trajectory stabilization for a planar carangiform robot fish. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, pp. 756–762 (2002)

    Google Scholar 

  • Morgansen, K.A., Triplett, B.I., Klein, D.J.: Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans. Robot. 23(6), 1184–1199 (2007)

    Article  Google Scholar 

  • Mori, M., Hirose, S.: Three-dimensional serpentine motion and lateral rolling by active cord mechanism ACM-R3. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 829–834 (2002)

    Chapter  Google Scholar 

  • Murugendran, B., Transeth, A.A., Fjerdingen, S.A.: Modeling and path-following for a snake robot with active wheels. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 3643–3650 (2009)

    Google Scholar 

  • Nilsson, M.: Ripple and roll: slip-free snake robot locomotion. In: Proc. Mechatronical Computer Systems for Perception and Action, Piza, Italy (1997)

    Google Scholar 

  • Nilsson, M.: Snake robot—free climbing. IEEE Control Syst. Mag. 18(1), 21–26 (1998)

    Article  Google Scholar 

  • Nilsson, M.: Serpentine locomotion on surfaces with uniform friction. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1751–1755 (2004)

    Google Scholar 

  • Ohashi, H., Yamada, T., Hirose, S.: Loop forming snake-like robot ACM-R7 and its Serpenoid Oval control. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 413–418 (2010)

    Google Scholar 

  • Ohno, H., Hirose, S.: Design of slim slime robot and its gait of locomotion. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 2, pp. 707–715 (2001)

    Google Scholar 

  • Ostrowski, J., Burdick, J.: The geometric mechanics of undulatory robotic locomotion. Int. J. Robot. Res. 17(7), 683–701 (1998)

    Article  Google Scholar 

  • Ostrowski, J.P.: The mechanics and control of undulatory robotic locomotion. Ph.D. thesis, California Institute of Technology (1996)

    Google Scholar 

  • Paap, K.L., Kirchner, F., Klaassen, B.: Motion control scheme for a snake-like robot. In: Proc. IEEE Int. Symp. Computational Intelligence in Robotics and Automation, pp. 59–63 (1999)

    Google Scholar 

  • Poi, G., Scarabeo, C., Allotta, B.: Traveling wave locomotion hyper-redundant mobile robot. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, pp. 418–423 (1998)

    Google Scholar 

  • Prautsch, P., Mita, T.: Control and analysis of the gait of snake robots. In: Proc. IEEE Int. Conf. Control Applications, Kohala Coast, HI, USA, pp. 502–507 (1999)

    Google Scholar 

  • Prautsch, P., Mita, T., Iwasaki, T.: Analysis and control of a gait of snake robot. Trans. Inst. Electr. Eng. Jpn., Sect. D 120-D(3), 372–381 (2000)

    Google Scholar 

  • Rincon, D.M., Sotelo, J.: Ver-Vite: dynamic and experimental analysis for inchwormlike biomimetic robots. IEEE Robot. Autom. Mag. 10(4), 53–57 (2003)

    Article  Google Scholar 

  • Saito, M., Fukaya, M., Iwasaki, T.: Serpentine locomotion with robotic snakes. IEEE Control Syst. Mag. 22(1), 64–81 (2002)

    Article  Google Scholar 

  • Sato, T., Watanabe, W., Ishiguro, A.: An adaptive decentralized control of a serpentine robot based on the discrepancy between body, brain and environment. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 709–714 (2010)

    Google Scholar 

  • Sfakiotakis, M., Tsakiris, D.: Biomimetic centering for undulatory robots. Int. J. Robot. Res. 26, 1267–1282 (2007)

    Article  Google Scholar 

  • Shan, Y., Koren, Y.: Design and motion planning of a mechanical snake. IEEE Trans. Syst. Man Cybern. 23(4), 1091–1100 (1993)

    Article  Google Scholar 

  • Shan, Y., Koren, Y.: Obstacle accommodation motion planning. IEEE Trans. Robot. Autom. 11(1), 36–49 (1995)

    Article  Google Scholar 

  • Shapiro, A., Greenfield, A., Choset, H.: Frictional compliance model development and experiments for snake robot climbing. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 574–579 (2007)

    Chapter  Google Scholar 

  • Taal, S.R., Yamada, H., Hirose, S.: 3 axial force sensor for a semi-autonomous snake robot. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 4057–4062 (2009)

    Google Scholar 

  • Tanaka, M., Matsuno, F.: Control of 3-dimensional snake robots by using redundancy. In: IEEE Int. Conf. Robotics and Automation, pp. 1156–1161 (2008a)

    Chapter  Google Scholar 

  • Tanaka, M., Matsuno, F.: Modeling and control of a snake robot with switching constraints. In: SICE Annual Conf. (2008b)

    Google Scholar 

  • Tanaka, M., Matsuno, F.: A study on sinus-lifting motion of a snake robot with switching constraints. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2270–2275 (2009)

    Google Scholar 

  • Tanev, I., Ray, T., Buller, A.: Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Trans. Robot. 21(4), 632–645 (2005)

    Article  Google Scholar 

  • Togawa, K., Mori, M., Hirose, S.: Study on three-dimensional active cord mechanism: development of ACM-R2. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 3, pp. 2242–2247 (2000)

    Google Scholar 

  • Transeth, A.A., van de Wouw, N., Pavlov, A., Hespanha, J.P., Pettersen, K.Y.: Tracking control for snake robot joints. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Diego, CA, USA, pp. 3539–3546 (2007b)

    Google Scholar 

  • Transeth, A.A., Leine, R.I., Glocker, C., Pettersen, K.Y.: 3D snake robot motion: non-smooth modeling, simulations, and experiments. IEEE Trans. Robot. 24(2), 361–376 (2008a)

    Article  Google Scholar 

  • Transeth, A.A., Leine, R.I., Glocker, C., Pettersen, K.Y., Liljebäck, P.: Snake robot obstacle aided locomotion: modeling, simulations, and experiments. IEEE Trans. Robot. 24(1), 88–104 (2008b)

    Article  Google Scholar 

  • Transeth, A.A., Pettersen, K.Y., Liljebäck, P.: A survey on snake robot modeling and locomotion. Robotica 27, 999–1015 (2008c)

    Article  Google Scholar 

  • Transeth, A.A., Liljebäck, P., Fjerdingen, S., Kyrkjebø, E., Mugaas, T.: New possibilities—next generation robotic systems for inspection and maintenance operations. In: Proc. EuroMaintenance, Fiera di Verona, Italy, pp. 229–232 (2010)

    Google Scholar 

  • Ute, J., Ono, K.: Fast and efficient locomotion of a snake robot based on self-excitation principle. In: Proc. 7th Int. Workshop on Advanced Motion Control, pp. 532–539 (2002)

    Google Scholar 

  • Vela, P.A., Morgansen, K.A., Burdick, J.W.: Underwater locomotion from oscillatory shape deformations. In: Proc. IEEE Conf. Decision and Control, vol. 2, pp. 2074–2080 (2002a)

    Google Scholar 

  • Wang, Z., Ma, S., Li, B., Wang, Y.: Stability and adaptability of passive creeping of a snake-like robot. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 395–400 (2010)

    Google Scholar 

  • Watanabe, K., Iwase, M., Hatakeyama, S., Maruyama, T.: Control strategy for a snake-like robot based on constraint force and verification by experiment. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1618–1623 (2008)

    Google Scholar 

  • Wiriyacharoensunthorn, P., Laowattana, S.: Analysis and design of a multi-link mobile robot (serpentine). In: Proc. IEEE Int. Conf. Robotics, Intelligent Systems and Signal Processing, vol. 2, pp. 694–699 (2002)

    Google Scholar 

  • Worst, R., Linnemann, R.: Construction and operation of a snake-like robot. In: Proc. IEEE Int. Joint Symp. Intelligence and Systems, Rockville, MD, USA, pp. 164–169 (1996)

    Chapter  Google Scholar 

  • Wright, C., Johnson, A., Peck, A., McCord, Z., Naaktgeboren, A., Gianfortoni, P., Gonzalez-Rivero, M., Hatton, R., Choset, H.: Design of a modular snake robot. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 2609–2614 (2007)

    Google Scholar 

  • Yamada, H., Hirose, S.: Study on the 3D shape of active cord mechanism. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2890–2895 (2006a)

    Google Scholar 

  • Yamada, H., Hirose, S.: Development of practical 3-dimensional active cord mechanism ACM-R4. J. Robot. Mechatron. 18(3), 1–7 (2006b)

    Google Scholar 

  • Yamada, H., Hirose, S.: Study of active cord mechanism—generalized basic equations of the locomotive dynamics of acm and analysis of sinus lifting. J. Robot. Soc. Jpn. 26(7), 801–811 (2008). In Japanese

    Article  Google Scholar 

  • Yamada, H., Hirose, S.: Study of a 2-DOF joint for the small active cord mechanism. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 3827–3832 (2009)

    Google Scholar 

  • Yamada, H., Hirose, S.: Steering of pedal wave of a snake-like robot by superposition of curvatures. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 419–424 (2010)

    Google Scholar 

  • Yamada, H., Chigisaki, S., Mori, M., Takita, K., Ogami, K., Hirose, S.: Development of amphibious snake-like robot ACM-R5. In: Proc. 36th Int. Symp. Robotics (2005)

    Google Scholar 

  • Yamakita, M., Hashimoto, M., Yamada, T.: Control of locomotion and head configuration of 3D snake robot (SMA). In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 2, pp. 2055–2060 (2003)

    Google Scholar 

  • Ye, C., Ma, S., Li, B., Wang, Y.: Turning and side motion of snake-like robot. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 5, pp. 5075–5080 (2004a)

    Google Scholar 

  • Ye, C., Ma, S., Li, B., Wang, Y.: Locomotion control of a novel snake-like robot. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 1, pp. 925–930 (2004b)

    Google Scholar 

  • Ye, C., Ma, S., Li, B., Liu, H., Wang, H.: Development of a 3D snake-like robot: Perambulator-II. In: Int. Conf. Mechatronics and Automation, pp. 117–122 (2007)

    Chapter  Google Scholar 

  • Yim, M.: New locomotion gaits. In: Proc. IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2508–2514 (1994)

    Google Scholar 

  • Yim, M., Duff, D.G., Roufas, K.D.: Walk on the wild side. IEEE Robot. Autom. Mag. 9(4), 49–53 (2002)

    Article  Google Scholar 

  • Yu, S., Ma, S., Li, B., Wang, Y.: Analysis of helical gait of a snake-like robot. In: IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, pp. 1183–1188 (2008)

    Google Scholar 

  • Yu, S., Ma, S., Li, B., Wang, Y.: An amphibious snake-like robot: design and motion experiments on ground and in water. In: Int. Conf. Information and Automation, pp. 500–505 (2009)

    Chapter  Google Scholar 

  • Zarrouk, D., Sharf, I., Shoham, M.: Analysis of earthworm-like robotic locomotion on compliant surfaces. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 1574–1579 (2010)

    Google Scholar 

  • Zuo, Z., Wang, Z., Li, B., Ma, S.: Serpentine locomotion of a snake-like robot in water environment. In: IEEE Int. Conf. Robotics and Biomimetics, pp. 25–30 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Liljebäck .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Liljebäck, P., Pettersen, K.Y., Stavdahl, Ø., Gravdahl, J.T. (2013). Introduction. In: Snake Robots. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2996-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2996-7_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2995-0

  • Online ISBN: 978-1-4471-2996-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics