Skip to main content

Dynamic and Steady-State Analysis of Switching Power Converters Made Easy: Complementarity Formalism

  • Chapter
Dynamics and Control of Switched Electronic Systems

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Power electronics converters represent an interesting class of switched nonlinear circuits. Switchings of electronic devices can be classified as external if forced by directly manipulable control variables, and internal if determined by state dependent conditions. The presence of internal switchings makes it difficult to know a priori the sequence of modes and also open loop steady-state behaviours are difficult to obtain. In this chapter, it is shown how linear complementarity systems can be used to model the behaviour of a wide class of power converters. The complementarity framework is suitable for modelling piecewise-linear characteristics of diodes and controlled electronic switches. The combination of such models with a state-space representation of the circuit allows obtaining a model of the power converter which is valid for any operating mode. The discretization of this model allows the formulation of a static complementarity problem whose solution provides the steady-state oscillation of the converter, either in open or closed-loop. Throughout the chapter, the usefulness of the complementarity formalism for the analysis of power converters is shown by considering three challenging examples: a DC–DC voltage-mode pulse-width modulated boost converter, a resonant converter and a switched capacitors converter are used as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acary, V., Bonnefon, O., Brogliato, B.: Time-stepping numerical simulation of switched circuits within the nonsmooth dynamical systems approach. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29(7), 1042–1055 (2010)

    Article  Google Scholar 

  2. Allmeling, J.H., Hammer, J.H.: PLECS—piecewise linear electrical circuit simulation for Simulink. In: Proc. of the IEEE International Conference on Power Electronics and Drive System, Hong Kong, pp. 355–360 (1999)

    Google Scholar 

  3. Almér, S., Jönsson, U.: Harmonic analysis of pulse-width modulated systems. Automatica 45(4), 851–862 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aprille, T.J. Jr., Trick, T.N.: Steady-state analysis of nonlinear circuits with periodic inputs. Proc. IEEE 60(1), 108–114 (1972). doi:10.1109/PROC.1972.8563

    Article  MathSciNet  Google Scholar 

  5. Bedrosian, D.G., Vlach, J.: An accelerated steady-state method for networks with internally controlled switches. IEEE Trans. Circuits Syst. I 39(7), 520–530 (1992)

    Article  Google Scholar 

  6. Brambilla, A., Gruosso, G., Redaelli, M.A., Gajani, G.S., Caviglia, D.D.: Improved small-signal analysis for circuits working in periodic steady state. IEEE Trans. Circuits Syst. I 57(2), 427–437 (2010)

    Article  MathSciNet  Google Scholar 

  7. Camlibel, M.K., Heemels, W.P.M.H., der Schaft, A.J.v., Schumacher, J.M.: Switched networks and complementarity. IEEE Trans. Circuits Syst. I 50(8), 1036–1046 (2003)

    Article  Google Scholar 

  8. Camlibel, M.K., Iannelli, L., Vasca, F.: Passivity and complementarity. GRACE Technical Report 352, University of Sannio (2006). Available at www.grace.ing.unisannio.it

  9. Chua, L.O.: Nonlinear circuits. IEEE Trans. Circuits Syst. 31(1), 69–87 (1984)

    Article  MATH  Google Scholar 

  10. Chung, H.S.H., Ioinovici, A., Zhang, J.: Describing functions of power electronics circuits using progressive analysis of circuit waveforms. IEEE Trans. Circuits Syst. I 47(7), 1026–1037 (2000)

    Article  Google Scholar 

  11. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  12. del Águila-López, F., Palà-Schönwälder, P., Molina-Gaudó, P., Mediano-Heredia, A.: A discrete-time technique for the steady-state analysis of nonlinear class-E amplifiers. IEEE Trans. Circuits Syst. I 54(6), 1358–1366 (2007)

    Article  MathSciNet  Google Scholar 

  13. Desoer, C.A., Kuh, E.S.: Basic Circuit Theory. McGraw-Hill, New York (1969)

    Google Scholar 

  14. Femia, N., Spagnuolo, G., Vitelli, M.: Unified analysis of synchronous commutations in switching converters. IEEE Trans. Circuits Syst. I 49(8), 939–954 (2002)

    Article  Google Scholar 

  15. Foster, M.P., Gould, C.R., Gilbert, A.J., Stone, D.A., Bingham, C.M.: Analysis of CLL voltage–output resonant converters using describing functions. IEEE Trans. Power Electron. 23(4), 1772–1781 (2008)

    Article  Google Scholar 

  16. Frasca, R., Camlibel, M.K., Goknar, I.C., Iannelli, L., Vasca, F.: Linear passive networks with ideal switches: Consistent initial conditions and state discontinuities. IEEE Trans. Circuits Syst. I 57(12), 3138–3151 (2010)

    Article  MathSciNet  Google Scholar 

  17. Glocker, C.: Models of non-smooth switches in electrical systems. Int. J. Circuit Theory Appl. 33(3), 205–234 (2005)

    Article  MATH  Google Scholar 

  18. Iannelli, L., Vasca, F., Camlibel, M.K.: Complementarity and passivity for piecewise linear feedback systems. In: Proc. of the IEEE Conference on Decision and Control, San Diego, California, USA, pp. 4212–4217 (2006)

    Chapter  Google Scholar 

  19. Iannelli, L., Vasca, F., Angelone, G.: Computation of steady-state oscillations in power converters through complementarity. IEEE Trans. Circuits Syst. I 58(6), 1421–1432 (2011)

    Article  MathSciNet  Google Scholar 

  20. Ioinovici, A.: Switched-capacitor power electronics circuits. IEEE Circuits Syst. Mag. 1(3), 37–42 (2001)

    Article  Google Scholar 

  21. Kassakian, J.G., Schlecht, M.F., Verghese, G.C.: Principles of Power Electronics. Prentice Hall, Reading (2001)

    Google Scholar 

  22. Kato, T., Tachibana, W.: Periodic steady-state analysis of an autonomous power electronic system by a modified shooting method. IEEE Trans. Power Electron. 13(3), 522–527 (1998)

    Article  Google Scholar 

  23. Kato, T., Inoue, K., Ogoshi, J.: Efficient multi-rate steady-state analysis of a power electronic system by the envelope following method. In: Proc. of the IEEE Power Electronics Specialists Conference, Orlando, Florida, USA, pp. 888–893 (2007)

    Chapter  Google Scholar 

  24. Kato, T., Inoue, K., Ogoshi, J., Kumiki, Y.: Efficient steady-state simulation of a power electronic circuit by parallel processing. In: Proc. of the IEEE Power Electronics Specialists Conference, Rhodes, Greece, pp. 2103–2108 (2008)

    Chapter  Google Scholar 

  25. Li, D., Tymerski, R.: Comparison of simulation algorithms for accelerated determination of periodic steady state of switched networks. IEEE Trans. Ind. Electron. 47(6), 1278–1285 (2000)

    Article  Google Scholar 

  26. Maffezzoni, P., Codecasa, L., D’Amore, D.: Event-driven time-domain simulation of closed-loop switched circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(11), 2413–2426 (2006)

    Article  Google Scholar 

  27. Maksimovic, D.: Automated steady-state analysis of switching power converters using a general-purpose simulation tool. In: Proc. of the IEEE Power Electronics Specialists Conference, St. Louis, Missouri (USA), pp. 1352–1358 (1997)

    Google Scholar 

  28. Mino, K., Rico, J., Barrera, E., Madrigal, M.: Component connection model for the automated steady state analysis of power electronic systems. In: Proc. of the IEEE Power and Energy Society General Meeting, Minneapolis, Minnesota, USA, pp. 1–7 (2010)

    Google Scholar 

  29. Mohan, N., Undeland, T.M., Robbins, W.P.: Power Electronics: Converters, Applications, and Design, 3rd edn. Wiley, New York (2002)

    Google Scholar 

  30. Möller, M., Glocker, C.: Non-smooth modelling of electrical systems using the flux approach. Nonlinear Dyn. 50(1–2), 273–295 (2007)

    Article  MATH  Google Scholar 

  31. Qiu, S.S., Filanovsky, I.M.: Harmonic analysis of pwm converters. IEEE Trans. Circuits Syst. I 47(9), 1340–1349 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stern, T.E.: Piecewise-linear network theory. Technical Report 315, MIT Research Laboratory of Electronics, Cambridge, Massachusetts, USA (1956)

    Google Scholar 

  33. Tam, K.C., Wong, S.C., Tse, C.K.: An improved wavelet approach for finding steady-state waveforms of power electronics circuits using discrete convolution. IEEE Trans. Circuits Syst. II 52(10), 690–694 (2005)

    Article  Google Scholar 

  34. Tourkhani, F., Viarouge, P.: A method for determining the minimum dimension of the steady-state equation of a switching network. IEEE Trans. Circuits Syst. I 48(2), 250–255 (2001)

    Article  Google Scholar 

  35. Tourkhani, F., Viarouge, P., Meynard, T.A., Gagnon, R.: Power converter steady-state computation using the projected Lagrangian method. In: Proc. of the IEEE Power Electronics Specialists Conference, St. Louis, Missouri, USA, pp. 1359–1363 (1997)

    Google Scholar 

  36. Tourkhani, F., Allain, M., Viarouge, P.: Steady state analysis of switching converters without predefined switching period. In: Proc. of the Canadian Conference on Electrical and Computer Engineering, Vancouver, Canada, pp. 706–708 (2007)

    Chapter  Google Scholar 

  37. Tymerski, R.: Frequency analysis of time-interval-modulated switched networks. IEEE Trans. Power Electron. 6(2), 287–295 (1991)

    Article  Google Scholar 

  38. Vasca, F., Iannelli, L., Camlibel, M.K., Frasca, R.: A new perspective for modeling power electronics: complementarity framework. IEEE Trans. Power Electron. 24(2), 456–468 (2009)

    Article  Google Scholar 

  39. Vasca, F., Angelone, G., Iannelli, L.: Linear complementarity models for steady-state analysis of pulse-width modulated switched electronic systems. In: IEEE Mediterranean Conference on Control and Automation, Corfu, Greece, pp. 400–405 (2011)

    Google Scholar 

  40. Wong, B.K.H., Chung, H.: Dual-loop iteration algorithm for steady-state determination of current-programmed DC/DC switching converters. IEEE Trans. Circuits Syst. I 46(4), 521–526 (1999)

    Article  Google Scholar 

  41. Wong, B.K.H., Chung, H.S.H., Lee, S.T.S.: Computation of the cycle state-variable sensitivity matrix of PWM DC/DC converters and its applications. IEEE Trans. Circuits Syst. I 47(10), 1542–1548 (2000)

    Article  Google Scholar 

  42. Yang, B., Lee, F.C., Zhang, A.J., Huang, G.: LLC resonant converter for front end DC/DC conversion. In: Proc. of the IEEE Applied Power Electronics Conference and Exposition, Dallas, Texas, USA, pp. 1108–1112 (2002)

    Google Scholar 

  43. Yuan, F., Opal, A.: Computer methods for switched circuits. IEEE Trans. Circuits Syst. I 50(8), 1013–1024 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Angelone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Angelone, G., Vasca, F., Iannelli, L., Camlibel, K. (2012). Dynamic and Steady-State Analysis of Switching Power Converters Made Easy: Complementarity Formalism. In: Vasca, F., Iannelli, L. (eds) Dynamics and Control of Switched Electronic Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2885-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2885-4_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2884-7

  • Online ISBN: 978-1-4471-2885-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics