Skip to main content

Distinguishing between Fertilization Failure and Early Pregnancy Loss when Identifying Male-Mediated Adverse Pregnancy Outcomes

  • Chapter
Advances in Male Mediated Developmental Toxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 518))

Abstract

Successful reproduction depends upon the precise orchestration of many physiological processes. With respect to male reproductive performance, normal copulatory behavior and ejaculatory function are required to insure that semen is deposited in the female tract. Then, a sufficient number of sperm must reach the site of fertilization at the optimal time for the oocyte to be fertilized, and those sperm that reach the oocyte must be capable of fertilizing the egg (binding and penetrating the zona pellucida and fusing with the oolemma). Finally, the fused spermatozoon must be intact genetically in order to support normal embryonic and postnatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Adler, I.-D., Baumgartner, A., Gonda, H., Friedman, M.A. and Skerhut, M., 2000, 1-Aminobenotriazole inhibits acrylamide-induccd dominant lethal effects in spermatids of male mice. Mutagenesis. 15:133–136.

    Article  PubMed  CAS  Google Scholar 

  • Chapin, R.E. and Sloane, R.A., 1997, Reproductive assessment by continuous breeding: evolving study design and summaries of ninety studies. Environ Health Perspect. 105, Supple 1:199–205.

    PubMed  Google Scholar 

  • Chapin, R.E., Fail, P.A., George, J.D., Grizzle, T.B., Heindel, J.J., Harry, G.J., Collins, B.J. and Teague, J., 1995, The reproductive and neural toxicities of acrylamide and three analogues in Swiss mice, evaluated using the continuous breeding protocol. Fund Appl Toxicol. 27:9–24.

    Article  CAS  Google Scholar 

  • Clegg, E.D., Perreault, S.D. and Klinefelter, G.R., 2001, Assessment of Male Reproductive Toxicity, in: Principles and Methods of Toxicology, Fourth Edition, A. Wallace Hayes, ed., Taylor & Francis, Philadelphia, p. 1263.

    Google Scholar 

  • Dearfield, K.L., Abernathy, C.O., Ottley, M.S., Brantner, J.H. and Hayes, P.F., 1988, Acrylamide: its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutat. Res. 195:45–77.

    Article  PubMed  CAS  Google Scholar 

  • Dearfield, K.L., Douglas, G.R., Ehling U.H., Moore, M.M., Sega, G.A. and Brusick, D.J., 1995, Acrylamide: a review of its genotoxicity and an assessment of heritable genetic risk. Mutation Res. 330:71–99.

    Article  PubMed  CAS  Google Scholar 

  • Evenson, D.P., Jost, L.K., Marshall, D., Zinaman, M.J., Clegg, E., Purvis, K., de Angelis, P., and Claussen, O.P., 1999, Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Human Reprod. 14:1039–1049.

    Article  CAS  Google Scholar 

  • Evenson, D.P., Larson, K., and Jost, L.K., 2002, Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation related to male infertility and comparisons with other techniques. J Androl. 23:25–43.

    PubMed  Google Scholar 

  • Generoso, W.M., Sega, G.A., Lockhart, A.M., Hughes, L.A., Cain, K.T., Cacheiro, N.L.A., and Shelby, M.D., 1996, Dominant lethal mutations, heritable translocations, and unscheduled DNA synthesis induced in male mouse germ cells by glycidamide, a metabolite of acrylamide. Mutat Res. 371:175–183.

    Article  PubMed  CAS  Google Scholar 

  • Green, S., Auletta, A., Fabricant, R., Kapp, M., Sheu, C., Springer, J., and Whitfield, B., 1985, Current status of bioassays in genetic toxicology: The dominant lethal test. Mutation Res. 154:49–67.

    Article  PubMed  CAS  Google Scholar 

  • Harder, B., 2002, Cancer link cooks up doubt. Heating may form potential carcinogen in food. Science News. 161:277.

    Article  Google Scholar 

  • Holland, N., Ahlborn, T., Turteltaub, K., Markee, C., Moore II, D., Wyrobek, A.J. and Smith, M.T., 1999, Acrylamide causes preimplantation abnormalities in embryos and induces chromatin-adducts in male germ cells of mice. Reprod Toxicol. 13:167–178.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, D.S., Twigg, J.P., Gordon, E.L., Fulton, N., Milne, P.A., and Aitken R.J., 2000, DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 21: 33–44.

    PubMed  CAS  Google Scholar 

  • Janny, L. and Menezo, Y.J.R., 1994, Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol Reprod Dev. 38:36–42.

    Article  PubMed  CAS  Google Scholar 

  • Marchetti, F., Lowe, X., Bishop, J. and Wyrobek, A.J., 1997, Induction of chromosomal aberrations in mouse zygotes by acrylamide treatment of male germ cells and their correlation with dominant lethality and heritable translocations. Environ Mol Mutagen. 30:410–417.

    Article  PubMed  CAS  Google Scholar 

  • Moorman, W.J., Ahlers, H.W., Chapin, R.E., Daston, G.P., Foster, P.M.D., Kavlock, R.J., Morawetz, J.S., Schnorr, T.M. and Schrader, S.M., 2000, Prioritization of NTP reproductive toxicants for field studies. Reprod Toxicol. 14:293–301.

    Article  PubMed  CAS  Google Scholar 

  • Pacchierotti, F., Tiveron, C, D’Archivio, M., Bassani, B., Cordelli, E., Leter, G., and Spano, M, 1994, Acrylamide-induced chromosomal damage in male mouse germ cells detected by cytogenetic analysis of one-cell zygotes. Mutat Res. 309:273–284.

    Article  PubMed  CAS  Google Scholar 

  • Perreault, S.D. and Mattson, B.A., 1993, Recovery and morphological evaluation of oocytes, zygotes and preimplantation embryos, in: Methods in Toxicology, Vol. 3, Part B, Female Reproductive Toxicology, J.J. Heindel and R.E. Chapin (eds.), Academic Press, Inc., Orlando, FL, p. 110.

    Google Scholar 

  • Perreault, S.D., 1998, Gamete Toxicology: The Impact of New Technologies, in: K. Korach, ed., Reproductive and Developmental Toxicology, Marcel Dekker, Inc., New York, p., 635.

    Google Scholar 

  • Perreault, S.D., Aitken, R.J., Baker, H.W.G., Evenson, D.P., Huszar, G., Irvine, D.S., Morris, I.D., Morris, R.A., Robbins, W.A., Sakkas, D., Spano, M., and Wyrobek, A.J., 2003, Integrating new tests of sperm genetic integrity into semen analysis: Breakout group discussion, in: Advances in Male-Mediated Developmental Toxicity, ed. B. Robaire and B. Hales, Kluwer-Plenum Press, in press.

    Google Scholar 

  • Rohrborn, G., 1970, The dominant lethals: Method and cytogenetic examination of early cleavage stages, in: Chemical Mutagenesis in Mammals and Man, F. Vogel and G. Rohrborn, eds., Springer-Verlag, Heidelberg, p.148.

    Chapter  Google Scholar 

  • Ryu, H.M., Lin, W.W., Lamb, D.J., Chuang, W., Lipshultz, L.I., and Bishoff, F.Z., 2001, Increased chromosome X, Y, and 18 nondisjunction in sperm from infertile patients that were identified as normal by strict morphology: implication for intracytoplasmic sperm injection. Fertil Steril. 76:879–883.

    Article  PubMed  CAS  Google Scholar 

  • Sega, G.A., Alcota, R.P.V., Tancongco, C.P. and Brimer, P.A., 1986, Acrylamide binding to the DNA and protamine of spermiogenic stages in the mouse and its relationship to genetic damage. Mutat Res. 216:221–230.

    Google Scholar 

  • Shelby, M.D., Cain, K.T., Hughes, L.A., Braden, P.W., and Generoso, W.M., 1986, Dominant lethal effects of acrylamide in male mice. Mutat Res. 173:35–40.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.K., Zenick, H., Preston, R.J., George, E.L. and Long, R.E., 1986, Dominant lethal effects of subchronic acrylamide administration in the male Long-Evans rat, Mutat Res. 173:273–277.

    Article  PubMed  CAS  Google Scholar 

  • Spano, M., Bonde, J.P., Hjollund, H.I., Kolstad, H.A., Cordelli, E, and Leter, G., 2000, Sperm chromatin damage impairs human fertility. The Danish Pregnancy Planner Study Team. Fertil Steril. 73:43–50.

    Article  PubMed  CAS  Google Scholar 

  • Sublet, V.H., Zenick, H., and Smith, M.K., 1989, Factors associated with reduced fertility and implantation rates in females mated to acrylamide-treated rats. Toxicology. 55:53–67.

    Article  PubMed  CAS  Google Scholar 

  • Tareke, E., Rydberg, P., Karlsson, P., Ericksson, S., and Tornqvist, M., 2000, Acrylamide: A cooking carcinogen?. Chem Res Toxicol. 13:517–522.

    Article  PubMed  CAS  Google Scholar 

  • Templado, C., Hoang, T., Greene, C, Rademaker, Z., Chernos, J., and Martin, R., 2002, Aneuploid spermatozoa in infertile men: teratozoospermia. Mol Reprod Dev. 61:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Titenko-Holland, N., Ahlborn, T., Lowe, X., Shang, N., Smith, M.T. and Wyrobek, A.J., 1998, Micronuclei and developmental abnormalities in 4-day mouse embryos after paternal treatment with acrylamide, Environ. Molec Mutagen. 31:206–217.

    Article  CAS  Google Scholar 

  • Tyl, R.W., Friedman, M.A., Losco, P.E., Fisher, L.C., lohnson, K.A., Storther, D.E. and Wolf, C.H., 2000a, Rat two-generation reproduction and dominant lethal study of acrylamide in drinking water. Reprod Toxicol. 14:385–401.

    Google Scholar 

  • Tyl, R.W., Marr, M.C., Myers, C.B., Ross, W.P., and Friedman, M.A., 2000b, Relationship between acrylamide reproductive and neurotoxicity in male rats. Reprod Toxicol. 14:147–157.

    Article  PubMed  CAS  Google Scholar 

  • U.S. Environmental Protection Agency, 1998, Health Effect Test Guidelines OPPTS 870.3800 Reproduction and Fertility Effects, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1996, Guidelines for reproductive toxicity risk assessment. Fed. Reg., 61(212):56274.

    Google Scholar 

  • Working, P.K., Bentley, K.S., Hurtt, M.E. and Mohr, K.L., 1987, Comparison of the dominant lethal effects of acrylonitrile and acrylamide in male Fischer 344 rats. Mutagenesis. 2:215–220.

    Article  PubMed  CAS  Google Scholar 

  • Zenick, H., Hope, E. and Smith, M.K., 1986, Reproductive toxicity associated with acrylamide treatment in male and female rats. J Toxicol Environ Health. 17:457–472.

    Article  PubMed  CAS  Google Scholar 

  • DISCLAIMER: This document has been reviewed in accordance with the U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perreault, S.D. (2003). Distinguishing between Fertilization Failure and Early Pregnancy Loss when Identifying Male-Mediated Adverse Pregnancy Outcomes. In: Robaire, B., Hales, B.F. (eds) Advances in Male Mediated Developmental Toxicity. Advances in Experimental Medicine and Biology, vol 518. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9190-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9190-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4829-0

  • Online ISBN: 978-1-4419-9190-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics