Skip to main content

Third Generation DNA Sequencing with a Nanopore

  • Chapter
  • First Online:
Nanopores

Abstract

With the advent of Next-Generation-Sequencing (NGS) technologies, an enormous volume of DNA sequencing data can be generated at low cost, placing genomic science within the grasp of everyday medicine. However, mired in this voluminous data, a new problem has emerged: the assembly of the genome from the short reads. In this chapter we examine the prospects for sequencing DNA using a synthetic nanopore. Nanopore sequencing has the potential for very long reads, reducing the computational burden posed by alignment and genome assembly, while at the same time eliminating logistically challenging and error-prone amplification and library formation due to its exquisite single molecule sensitivity. On the other hand, long high fidelity reads demand stringent control over both the DNA configuration in the pore and the translocation kinetics. We examine the prospects for satisfying these specifications with a synthetic nanopore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B, et al (2001) Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.

    Article  Google Scholar 

  2. Venter JC, Adams MD, Myers E, Li PW, Mural RJ, et al (2001) The sequence of human genome. Science 291, 1304–1351.

    Article  Google Scholar 

  3. Mardis ER (2008) The impact of next-generation sequencing technology on genetics,” Trends Genetics 24(3), 133–141.

    Article  Google Scholar 

  4. Metzker ML (2010) Sequencing technologies—the next generation. Nature Rev. Genetics 11, 31–46.

    Article  Google Scholar 

  5. Eid J, Fehr A, Gray J, Luong K, Lyle J, et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138.

    Article  Google Scholar 

  6. Pop M, and Salzberg SL (2008) Bioinformatics Challenges in New sequencing Technologies,” Trends in Genetics 24(3), 142149.

    Article  Google Scholar 

  7. Chaisson M, et al (2004) Fragment assembly with short reads. Bioinformatics 20, 2067–2074.

    Article  Google Scholar 

  8. Whiteford N, et al (2005) An analysis of the feasibility of short read sequencing. Nucleic Acids Res. 33, e171.

    Article  Google Scholar 

  9. Voelkerding KV, Dames SA, and Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 55(4), 64158.

    Article  Google Scholar 

  10. Anker P, Mulcahy H, Chen XQ, and Stroun M (1999) Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer and Metastasis Reviews 18(1), 65–73.

    Article  Google Scholar 

  11. Branton D, Deamer DW, Marziali A, Bayley H, et al (2008) The potential and challenges of nanopore sequencing. Nature biotechnology 26(10), 1146–1153.

    Article  Google Scholar 

  12. Akeson M, Branton D, Kasianowicz JJ, Brandin E, and Deamer DW (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77(6), 3227–3233.

    Article  Google Scholar 

  13. Chen P,et al (2004) Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 4(11), 2293–2298.

    Article  Google Scholar 

  14. Heng JB, et al (2004) Sizing DNA using a nanometer-diameter pore. Biophys. J. 87(4), 2905–2911.

    Article  Google Scholar 

  15. Kasianowicz JJ, Brandin E, Branton D, and Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 93(24), 13770–13773.

    Article  Google Scholar 

  16. Li JL, Gershow M, Stein D, Brandin E, and Golovchenko JA (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2(9), 611–615.

    Article  Google Scholar 

  17. Meller A, Nivon L, Brandin E, Golovchenko JA, and Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. U.S.A. 97(3), 1079–1084.

    Article  Google Scholar 

  18. Storm AJ, Chen JH, Zandbergen HW, and Dekker C (2005) Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71(5), 10.

    Google Scholar 

  19. Clarke J, et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol doi: 10.1038/NNANO.2009.12.

    Google Scholar 

  20. Cockroft S, Chu J, Amorin M, Bayley H, and Ghadiri M (2008) A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130(3), 818.

    Article  Google Scholar 

  21. Mirsaidov U, Comer J, Dimitrov V, Aksimentiev A, and Timp G (2010) Slowing the Translocation of Double-Stranded DNA Using a Nanopore Smaller than the Double Helix. Nanotechnology 21, 395501.

    Article  Google Scholar 

  22. Stoddart D, Heron AJ, Mikhailova E, Maglia G, and Bayley H (2009) Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proceedings of National Academy of Sciences 106(19), 7702–7707.

    Article  Google Scholar 

  23. Likharev KK (1999) Single-Electron Devices and Their Applications. Proc. IEEE 87, 606–632.

    Article  Google Scholar 

  24. Lagerqvist J, Zwolak M, and Di Ventra M (2006) Fast DNA sequencing via transverse electronic transport,” Nano Letters 6(4), 779.

    Article  Google Scholar 

  25. Chang SA, He J, Lin LS, et al (2009) Tunnel conductance of Watson-Crick nucleoside-base pairs from telegraph noise. Nanotechnology 20(18), 7.

    Article  Google Scholar 

  26. He J, Lin LS, Liu H, et al (2009) A hydrogen-bonded electron-tunneling circuit reads the base composition of unmodified DNA. Nanotechnology 20(7), 8.

    Article  Google Scholar 

  27. Meunier V, and Krstic PS (2008) Enhancement of the transverse conductance in DNA nucleotides. Journal of Chemical Physics 128(4), 4.

    Article  Google Scholar 

  28. Sigalov G, Comer J, Timp G, et al (2008) Detection of DNA Sequences Using an Alternating Electric Field in a Nanopore Capacitor, Nano Letters 8(1), 56–63.

    Article  Google Scholar 

  29. Fologea D, Uplinger J, Thomas B, McNabb DS and Li JL (2005) Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737.

    Article  Google Scholar 

  30. Storm AJ, Storm C, Chen JH, Zandbergen H, Joanny JF, and Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett. 5, 1193–1197.

    Google Scholar 

  31. Soni GV and Meller A (2007) Progress toward ultrafast DNA Sequencing using solid-state nanopores. Clinical Chemistry 53(11), 1996–2001.

    Article  Google Scholar 

  32. Gershow M and Golovchenko JA (2007) Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotechnol. 2(12), 775–779.

    Article  Google Scholar 

  33. Timp W, Mirsaidov UM, Wang D, Comer J, Aksimentiev O, and Timp G (2010) Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE Trans. Nanotechnology 9, 281–294.

    Article  Google Scholar 

  34. Mirsaidov UM, Wang D, Timp W, and Timp G (2010) Molecular Diagnostics for Personal Medicine Using a Nanopore,” WIRES Review Nanomedicine Nanobiotechnology,2, 367–381.

    Article  Google Scholar 

  35. Heng JB, Aksimentiev A, Ho C, Dimitrov V, Sorsch T, Miner J, Mansfield W, Schulten K, and Timp G (2005) Beyond the Gene Chip. Bell Labs Tech. J. 10(3), 5–22.

    Article  Google Scholar 

  36. Cruz-Chu ER, Ritz T, Siwy ZS, Schulten K (2009) Molecular control of ionic conduction in polymer nanopores. Faraday Disc. 143, 47–62.

    Article  Google Scholar 

  37. Ho C, Qiao R, Heng JB, Chatterjee A, Timp R, Aluru NR, and Timp G (2005) Electrolytic transport through a synthetic nanometer-diameter pore. Proceedings of National Academy of Sciences 102(30), 10445–10450.

    Article  Google Scholar 

  38. Venkatesan BM, Dorvel B, Yemenicioglu S, Watkins N, Petrov I, and Bashir R (2009) Highly sensitive, mechanically stable nanopore sensors for DNA analysis Advanced Materials, 21(27), 2771–2776.

    Article  Google Scholar 

  39. Dimitrov V, Aksimentiev A, Schulten K, Heng JB, Sorsch T, et al (2006) Exploring the Prospects for a Nanometer-scale Gene Chip. IEDM Proceedings 169–172.

    Google Scholar 

  40. Fischbein MD and Drndić M (2007) Sub-10 nm Device Fabrication in a Transmission Electron Microscope. Nano Lett. 7(5), 1329–1337.

    Article  Google Scholar 

  41. Martin CR, Nishizawa M, Jiarge K, Kang M, and Lee SB (2001) Controlling Ion Transport Selectively in Gold Nanotubule Membranes. Adv. Mater. 13, 13511362.

    Article  Google Scholar 

  42. Li J, Stein D, McMullan C, et al (2001) Ion-beam sculpting at nanometre length scales. Nature 412, 6843, 166–169.

    Article  Google Scholar 

  43. Siwy Z and Fulinski A (2002) Fabrication of a synthetic nanopore ion pump. Physical Review Letters 89(19), 4.

    Article  Google Scholar 

  44. Dimitrov V, Mirsaidov UM, Wang D, Sorsch T, et al (2010) Nanopores in Solid-State Membranes Engineered for Single-Molecule Detection. Nanotechnology 21, 065502.

    Article  Google Scholar 

  45. Storm AJ, Chen JH, Ling XS, et al (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials 2(8), 537–540.

    Article  Google Scholar 

  46. Nair PR and Alam MA (2006) Performance limits of nanobiosensors. Appl. Phys. Lett. 88, 233120.

    Article  Google Scholar 

  47. Berg HC (1993) Random walks in biology, Princeton University Press, Princeton, N.J.

    Google Scholar 

  48. Heng JB, Aksimentiev A, Ho C, Marks P, Grinkova YV, Sligar S, Schulten K, and Timp G, (2006) The Electromechanics of DNA in a Synthetic Nanopore. Biophys. J. 90, 1098–1106.

    Article  Google Scholar 

  49. Heng JB, Aksimentiev A, Ho C, Marks P, Grinkova YV, Sligar S, Schulten K, and Timp G (2005) Stretching DNA using the Field in a Synthetic Nanopore. Nano Let. 5(10), 1883–1888.

    Article  Google Scholar 

  50. Nakane J, Akeson M, and Marziali A (2002) Evaluation of nanopores as candidates for electronic analyte detection. Electrophoresis 23(16), 2592–2601.

    Article  Google Scholar 

  51. Durack G (2003) Cell Sorting Techniques and Technologies in Emerging Tools for Single Cell Analysis: Advances in optical measurement technologies. Wiley - Liss.

    Google Scholar 

  52. Scott R, Sethu P, Harnett CK (2008) 3D hydrodynamic focusing in a microfluidic. Rev. Sci. Instru. 79, 046104.

    Article  Google Scholar 

  53. Marcus JS, Anderson WF, and Quake SR (2006) Microfluidic single-cell MRNA isolation and analysis. Anal. Chem. 78(9), 3084–3089.

    Article  Google Scholar 

  54. Melin J and Quake SR (2007) Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231.

    Article  Google Scholar 

  55. Luan B and Aksimentiev A (2008) Strain softening in stretched DNA. Physical Review Letters 101, 11.

    Article  Google Scholar 

  56. Li JL, Gershow M, Stein D, et al (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nature Materials 2(9), 611–615.

    Article  Google Scholar 

  57. Zhao Q, Comer J, Dimitrov V, et al (2008) Stretching and unzipping nucleic acid hairpins using a synthetic nanopore. Nucleic Acids Research 36(5), 1532–1541.

    Article  Google Scholar 

  58. Comer J, Dimitrov V, Zhao Q, et al (2009) Microscopic Mechanics of Hairpin DNA Translocation through Synthetic Nanopores. Biophysical Journal 96(2), 593–608.

    Article  Google Scholar 

  59. Mirsaidov UM, Timp W, Zou X, et al (2009) Nanoelectromechanics of Methylated DNA in a Synthetic Nanopore. Biophysical Journal 96(4), L32–L34.

    Article  Google Scholar 

  60. Heinemann U and Hahn M (1992) CCAGGC-m5C-TGG, “Helical fine structure, hydration, and comparison with CCAGGCCTGG. Journal of Biological Chemistry 267, 7332–7341.

    Google Scholar 

  61. Derreumaux S, Chaoui M, Tevanian G, and Fermandjian S (2001) Impact of CpG methylation on structure, dynamics and solvation of cAMP DNA responsive element. Nucleic Acids Research 29, 2314–2326.

    Article  Google Scholar 

  62. Golovchenko JA, private communication.

    Google Scholar 

  63. Dawson JR and Harpst JA (1971) Light Scattering and Hydrodynamic Properties of Linear and Circular Bacteriophage Lambda DNA. Biopolymers 10, 2499–2508.

    Article  Google Scholar 

  64. Moffitt JR, Chemla YR, Izhaky D and Bustamante C (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc. Natl. Acad. Sci, U.S.A. 103(24), 9006–9011.

    Google Scholar 

  65. Shim J, Timp W, Comer J, Wang D, Mirsaidov U, Aksimentiev A, and Timp G, unpublished.

    Google Scholar 

  66. Smeets RMM, Keyser U, Dekker N, et al (2008) Noise in solid-state nanopores. Proceedings of the National Academy of Sciences 105(2), 417.

    Article  Google Scholar 

  67. Smeets RMM, Dekker NH, and Dekker C (2009) Low-frequency noise in solid-state nanopores. Nanotechnology 20, 095501.

    Google Scholar 

  68. Coulter W (1953) Means for Counting Particles Suspended in a Fluid, USPTO.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge numerous contributions and our close collaboration with Jiunn Heng, Chuen Ho and Greg Sigalov. This work was funded by grants from National Institutes of Health [R01 HG003713A, PHS 5 P41-RR05969], the Large Resource Allocation Committee [MCA05S028], the Petroleum Research Fund (48352-G6), and the National Science Foundation [TH 2008–01040 ANTC, PHY-0822613 and DMR-0955959].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Timp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Timp, G. et al. (2011). Third Generation DNA Sequencing with a Nanopore. In: Iqbal, S., Bashir, R. (eds) Nanopores. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8252-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8252-0_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8251-3

  • Online ISBN: 978-1-4419-8252-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics