Skip to main content

Microwave Effect on Clay Pillaring

  • Chapter
  • First Online:
Pillared Clays and Related Catalysts

Abstract

Pillared clays may be prepared in presence of microwave irradiation as it has been extensively used in organic chemistry syntheses. Preparation time of the conventional intercalating solution takes about 2 days, but only 15 min when the preparation mixture is microwave-irradiated. The amount of water required to disperse and to dilute the pillar precursor salts is also significantly reduced. In this work, the properties of the pillared clays prepared in presence of microwave irradiation are compared to those prepared by the conventional way. Their performance as catalysts or as adsorbents is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gil A, Korili SA, Vicente MA (2008) Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Cat Rev Sci Eng 50:153

    Article  CAS  Google Scholar 

  2. Gil A, Gandía LM, Vicente MA (2000) Recent advances in the synthesis and catalytic applications of pillared clays. Cat Rev Sci Eng 42:145

    Article  CAS  Google Scholar 

  3. Kloprogge JT (1998) Synthesis of smectites and porous pillared clay catalysts: a review. J Porous Mater 5:5

    Article  CAS  Google Scholar 

  4. Figueras F (1988) Pillared clays as catalysts. Cat Rev Sci Eng 30:457

    Article  CAS  Google Scholar 

  5. Singh V, Sapehiyia V, Srivastava V, Kaur S (2006) ZrO2-pillared clay: an efficient catalyst for solventless synthesis of biologically active multifunctional dihydropyrimidinones. Catal Comm 7:571

    Article  CAS  Google Scholar 

  6. Gyftopoulou ME, Millan M, Bridgwater AV, Dugwell D, Kandiyoti R, Hriljac JA (2005) Pillared clays as catalysts for hydrocracking of heavy liquid fuels. Appl Catal A 282:205

    Article  CAS  Google Scholar 

  7. Pichat P, Khalaf H, Tabet D, Houari M, Saisi M (2005) Ti-montmorillonite as photocatalyst to remove 4-chlorophenol in water and methanol in air. Environ Chem Lett 2:191

    Article  CAS  Google Scholar 

  8. Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22

    Article  CAS  Google Scholar 

  9. Mott CJB (1988) Pillared Clays. Burch R (ed) Catal Today 2:199

    Google Scholar 

  10. Vicente MA, Bañares-Muñoz MA, Toranzo R, Gandía LM, Gil A (2001) Influence of the Ti precursor on the properties of Ti-pillared smectites. Clay Miner 36:125

    Article  CAS  Google Scholar 

  11. Belver C, Bañares-Muñoz MA, Vicente MA (2004) Fe-saponite pillared and impregnated catalysts I. Preparation and characterisation. Appl Catal B 50:101

    Article  CAS  Google Scholar 

  12. Kloprogge JT, Booy E, Jansen JBH, Geus JW (1994) Synthesis of Al-pillared beidellite and its catalytic activity in the hydroconversion of n-heptane. Catal Lett 29:293

    Article  CAS  Google Scholar 

  13. Miehe-Brendle J, Khouchaf L, Baron J, Le Dred R, Tuilier M-H (1997) Zr-exchanged and pillared beidellite: preparation and characterization by chemical analysis, XRD and Zr K EXAFS. Micropor Mater 11:171

    Article  CAS  Google Scholar 

  14. Gangas NHJ, Van Wonterghem J, Mörup S, Koch CJW (1985) Magnetic bridging in nontronite by intercalated iron. J Phys C: Solid State Phys 18:L1011

    Article  CAS  Google Scholar 

  15. De Bock M, Maes N, Cool P, Heylen I, Vansant EF (1996) Theoretical evaluation of pillared clay adsorbents: part III: the total porosity and the macrostructure of Al-pillared montmorillonite and hectorite. J Porous Mater 3:207

    Article  Google Scholar 

  16. Bergaya F, Hassoun N, Barrault J, Gatineau L (1993) Pillaring of synthetic hectorite by mixed [Al13-xFex] pillars. Clay Miner 28:109

    Article  CAS  Google Scholar 

  17. Fetter G, Heredia G, Velázquez LA, Maubert AM, Bosch P (1997) Synthesis of aluminum-pillared montmorillonites using highly concentrated clay suspensions. Appl Catal A 162:41

    Article  CAS  Google Scholar 

  18. Storaro L, Lenarda M, Perissinotto M, Lucchini V, Ganzerla R (1998) Hydroxy-Al pillaring of concentrated suspensions of smectite clays. Micropor Mesopor Mater 20:317

    Article  CAS  Google Scholar 

  19. Aouad A, Mandalia T, Bergaya F (2005) A novel method of Al-pillared montmorillonite preparation for potential industrial up-scaling. Appl Clay Sci 28:175

    Article  CAS  Google Scholar 

  20. Houari M, Saidi M, Tabet D, Pichat P, Khalaf H (2005) The removal of 4-chlorophenol and dichloroacetic acid in water using Ti-, Zr- and Ti/Zr-pillared bentonites as photocatalyst. Am J Appl Sci 2:1136

    Article  CAS  Google Scholar 

  21. Warrier KGK, Mukundan P, Ghosh SK, Sivakumar S, Damodaran AD (1994) Microwave drying of boehmite sol intercalated smectites. J Mater Sci 29:3415

    Article  CAS  Google Scholar 

  22. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11:882

    Article  CAS  Google Scholar 

  23. Sun S, Jiang Y, Yu L, Li F, Yang Z, Hou T, Hu D, Xia M (2006) Enhanced photocatalytic activity of microwave treated TiO2 pillared montmorillonite. Mater Chem Phys 98:377

    Article  CAS  Google Scholar 

  24. Singh V, Sapehiyia V, Lal Kad G (2004) Ultrasound and microwave activated preparation of ZrO2-pillared clay composite: catalytic activity for selective, solventless acylation of 1,n-diols. J Molec Catal A 210:119

    Article  CAS  Google Scholar 

  25. Fetter G, Heredia G, Maubert AM, Bosch P (1996) Synthesis of Al-intercalated montmorillonites using microwave irradiation. J Mater Chem 6:1857

    Article  CAS  Google Scholar 

  26. De Andrés AM, Merino J, Galván JC, Ruiz-Hitzky E (1999) Synthesis of pillared clays assisted by microwaves. Mater Res Bull 34:641

    Article  Google Scholar 

  27. Fetter G, Hernández V, Rodríguez V, Valenzuela MA, Lara VH, Bosch P (2003) Effect of microwave irradiation time on the synthesis of zirconia-pillared clays. Mater Lett 57:1220

    Article  CAS  Google Scholar 

  28. Figueras F, Mattrod-Bashi A, Fetter G, Thrierr A, Zanchetta JV (1989) Preparation and thermal-properties of Zr-intercalated clays. J Catal 119:91

    Article  CAS  Google Scholar 

  29. Yamanaka S, Brindley GW (1979) High surface-area solids obtained by reaction of montmorillonite with zirconyl chloride. Clays Clay Miner 27:119

    Article  CAS  Google Scholar 

  30. Martínez-Ortiz MJ, Fetter G, Domínguez JM, Melo-Banda JA, Ramos-Gómez R (2003) Catalytic hydrotreating of heavy vacuum gas oil on Al- and Ti-pillared clays prepared by conventional and microwave irradiation methods. Micropor Mesopor Mater 58:73

    Article  Google Scholar 

  31. Lin J-T, Jong S-J, Cheng S (1993) A new method for preparing microporous titanium pillared clays. Micropor Mater 1:287

    Article  CAS  Google Scholar 

  32. Kooli F, Bovey J, Jones W (1997) Dependence of the properties of titanium-pillared clays on the host matrix: a comparison of montmorillonite, saponite and rectorite pillared materials. J Mater Chem 7:153

    Article  CAS  Google Scholar 

  33. Arfaoui J, Boudali LK, Ghorbel A (2006) Vanadia-doped titanium-pillared clay: preparation, characterization and reactivity in the epoxidation of allylic alcohol (E)-2-hexen-1-ol. Catal Commun 7:86

    Article  CAS  Google Scholar 

  34. Jagtap N, Ramaswamy V (2006) Oxidation of aniline over titania pillared montmorillonite clays. Appl Clay Sci 33:89

    Article  CAS  Google Scholar 

  35. Fetter G, Salas P, Velazquez LA, Bosch P (2000) Ce-Al-Pillared clays: synthesis, characterization, and catalytic performance. Ind Eng Chem Res 39:1944

    Article  CAS  Google Scholar 

  36. Gil A, Vicente MA, Korili SA (2005) Effect of the Si/Al ratio on the structure and surface properties of silica-alumina-pillared clays. J Catal 229:119

    Article  CAS  Google Scholar 

  37. Fetter G, Tichit D, De Menorval LC, Figueras F (1995) Synthesis and characterization of pillared clays containing both Si and Al pillars. Appl Catal A 126:165

    Article  CAS  Google Scholar 

  38. Han Y-S, Yamanaka S (2006) Preparation and characterization of microporous SiO2-ZrO2 pillared montmorillonite. J Solid State Chem 179:1146

    Article  CAS  Google Scholar 

  39. Trejo MA, Flores SO, Córdova I, Valenzuela MA, Fetter G (2003) Synthesis of Al-La-pillared clays using microwave irradiation. 18th North American catalysis society meeting Proceedings, Cancún, Mexico

    Google Scholar 

  40. Trejo M, Fetter G, Bosch P, Sánchez-Sánchez J, Alvarez LJ (2000) “Síntesis y caracterización de arcillas pilareadas con La-Al”, in XVII Simposio Iberoamericano de Catálisis, Vol. I, pp. 449, Oporto, Portugal.

    Google Scholar 

  41. Sterte J (1991) Preparation and properties of large-pore La-Al-pillared montmorillonite. Clays Clay Miner 39:167

    Article  CAS  Google Scholar 

  42. Booij E, Kloprogge JT, Van Veen JAR (1996) Preparation, structural characteristics and catalytic properties of large-pore rare earth element (Ce,La)/Al-pillared smectites. Clays Clay Miner 44:774

    Article  CAS  Google Scholar 

  43. Pires J, Machado M, De Carvalho MB (1998) Porosity and thermal stability of PILCs prepared with clays from different origins and different metal-polyhydroxycationic species of Al and Al/Ce. J Mater Chem, 8:1465

    Article  CAS  Google Scholar 

  44. Rao GR, Mishra BG (2005) A comparative UV-vis-diffuse reflectance study on the location and interaction of cerium ions in Al- and Zr-pillared montmorillonite clays. Mater Chem Phys 89:110

    Article  CAS  Google Scholar 

  45. Mishra BG, Rao GR (2005) Cerium containing Al- and Zr-pillared clays: promoting effect of cerium (III) ions on structural and catalytic properties. J Porous Mater 12:171

    Article  CAS  Google Scholar 

  46. Carriazo J, Guélou E, Barrault J, Tatibouët JM, Molina R, Moreno S (2005) Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity. Catal Today 107:126

    Google Scholar 

  47. Vicente MA, Belver C, Trujillano R, Bañares-Muñoz MA, Rives V, Korili SA, Gil A, Gandía LM, Lambert J-F (2003) Preparation and characterisation of vanadium catalysts supported over alumina-pillared clays. Catal Today 78:181

    Article  CAS  Google Scholar 

  48. Molina R, Vieira-Coelho A, Poncelet G (1992) Hydroxy-A1 pillaring of concentrated clay suspensions. Clays Clay Miner 40:480

    Article  CAS  Google Scholar 

  49. Pérez-Zurita MJ, Pérez-Quintana GJ, Alfonso H, Maldonado A, Urbino de Navarro C, De Abrisqueta A, Scott CE (2005) Synthesis of Al-PILC assisted by ultrasound: reducing the intercalation time and the amount of synthesis water. Clays Clay Miner 53:528

    Article  Google Scholar 

  50. Berry FJ, Rao KK, Oates G (1994) Fe-57 Mossbauer-spectroscopy study of iron-oxide pillared clays synthesized by microwave-heating. Hyperfine Interact 83:343

    CAS  Google Scholar 

  51. Awate SV, Waghmode SB, Patil KR, Agashe MS, Joshi PN (2001) Influence of preparation parameters on characteristics of zirconia-pillared clay using ultrasonic technique and its catalytic performance in phenol hydroxylation reaction. Korean J Chem Eng 18:257

    Article  CAS  Google Scholar 

  52. Sadykov VA, Kuznetsova TG, Doronin VP, Sorokina TP, Kochubei DI, Novgorodov BN, Kolomiichuk VN, Moroz EM, Zyuzin DA, Paukshtis EA, Fenelonov VB, Derevyankin AYa, Beloshapkin SA, Matyshak VA, Konin GA, Ross JRH (2001) Structure of zirconia nanoparticles used for pillaring of clay. Materials Research Society Symposium V paper V13.21, Boston.

    Google Scholar 

  53. Katdare SP, Ramaswamy V, and Ramaswamy AV (1997) Intercalation of Al oligomers into Ca2+-montmorillonite using ultrasonics, J Mater Chem 7:2197; (1999), Ultrasonication: a competitive method of intercalation for the preparation of alumina pillared montmorillonite catalyst, Catal Today 49:313; (2000), Factors affecting the preparation of alumina pillared montmorillonite employing ultrasonics, Microporous Mesoporous Mater 37:329

    Google Scholar 

  54. Sivakumar S, Damodaran AD, Warrier KGK (1995) Delamination through sonication for hydroxy metal-oxide sol intercalation of montmorillonite. Ceramics Internet 21:85

    Article  CAS  Google Scholar 

  55. Awate SV, Waghmode SB, Agashe MS (2004) Synthesis, characterization and catalytic evaluation of zirconia-pillared montmorillonite for linear alkylation of benzene. Catal Commun 5:407

    Article  CAS  Google Scholar 

  56. Negron A, Ramos S, Blumenfeld AL, Pacheco G, Fripiat J (2002) On the structural stability of montmorillonite submitted to heavy gamma-irradiation. Clays Clay Miner 50:35

    Article  CAS  Google Scholar 

  57. Pushkareva R, Kalinichenko E, Lytovchenko A, Pushkarev A, Kadochnikov V, Plastynina M (2002) Irradiation effect on physico-chemical properties of clay minerals. Appl Clay Sci 21:117

    Article  CAS  Google Scholar 

  58. Perreux L, Loupy A (2001) A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 57:9199

    Article  CAS  Google Scholar 

  59. Fioni A, Breccia A (1999) Chemistry by microwaves. Pure Appl Chem 71:573

    Article  Google Scholar 

  60. Lindley J (1990) Sonochemical aspects of inorganic and organometallic chemistry including catalysis. In: Mason TJ (ed) Chemistry with ultrasound, vol 28. Elsevier Applied Science, London, pp 27–64

    Google Scholar 

  61. Khachatryan AKh, Aloyan SG, May PW, Sargsyan R, Khachatryan VA, Baghdasaryan VS (2008) Graphite-to-diamond transformation induced by ultrasound cavitation. Diamond Related Mater 17:931

    Article  CAS  Google Scholar 

  62. Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681

    Article  CAS  Google Scholar 

  63. Neppiras EA (1980) Acoustic cavitation. Phys Rep 61:159

    Article  Google Scholar 

  64. Mason TJ (1990) Introduction. In: Mason TJ (ed) Chemistry with ultrasound, vol 28. Elsevier Applied Science, London, pp 1–25

    Google Scholar 

  65. Vicente I, Salagre P, Cesteros Y, Guirado F, Medina F, Sueiras JE (2009) Fast microwave synthesis of hectorite. Appl Clay Sci 43:103

    Article  CAS  Google Scholar 

  66. Granquist WT, Pollack SS (1959) Crystallization of hectorite favored by brucite nuclei. Clays Clay Miner 8:150

    Article  Google Scholar 

  67. Du D, Zhao X, Lu X (2005) Comparison of conventional and microwave-assisted synthesis and characteristics of aluminum-pillared rectorite. J Wuhan Univ Tech Mater Sci Ed 20:53

    Article  CAS  Google Scholar 

  68. Daniel LM, Frost RL, Zhu HY (2007) Synthesis and characterisation of clay-supported titania photocatalysts. J Coll Interface Sci 316:72

    Article  CAS  Google Scholar 

  69. Ashcroft RC, Bond SP, Beevers MS, Lawrence MAM, Gelder A, McWhinnie WR (1992) Sn-119 Mossbauer and X-ray photoelectron studies of novel tin oxide pillared laponite formed under ambient conditions from aryltin precursors - rapid intercalation reactions using microwave-heating. Polyhedron 11:1001

    Article  CAS  Google Scholar 

  70. Pinnavaia TJ, Tzou MS, Landau SD (1985) New chromia pillared clay catalysts. J Am Chem Soc 107:4783

    Article  CAS  Google Scholar 

  71. Volzone C, Cesio AM (2003) Changes in OH-Cr-montmorillonite after heating in air and nitrogen atmospheres. Mater Chem Phys 79:98

    Article  CAS  Google Scholar 

  72. Stievano L, Mbemba K, Train C, Wagner FE, Lambert J-F (2006) Intercalation of [Fe-8(mu(3)-O)(2)(mu(2)-OH)(12)(tacn)(6)](8+) single molecule magnets in saponite clay. J Phys Chem Solids 67:1363

    Article  CAS  Google Scholar 

  73. Benito P, Labajos FM, Rocha J, Rives V (2006) Influence of microwave radiation on the textural properties of layered double hydroxides. Micropor Mesopor Mater 94:148

    Article  CAS  Google Scholar 

  74. Benito P, Herrero M, Barriga C, Labajos FM, Rives V (2008) Microwave-assisted homogeneous precipitation of hydrotalcites by urea hydrolysis. Inorg Chem 47:5453

    Article  CAS  Google Scholar 

  75. Abelló S, Medina F, Tichit D, Pérez-Ramírez J, Cesteros Y, Salagre P, Sueiras JE (2005) Nanoplatelet-based reconstructed hydrotalcites: towards more efficient solid base catalysts in aldol condensations. Chem Comm 1453

    Google Scholar 

  76. Rivera JA, Fetter G, Bosch P (2006) Microwave power effect on hydrotalcite synthesis. Micropor Mesopor Mater 89:306

    Article  CAS  Google Scholar 

  77. Rivera JA, Fetter G, Giménez Y, Xochipa MM, Bosch P (2007) Nickel distribution in (Ni,Mg)/Al-layered double hydroxides. Appl Catal A 316:207

    Article  CAS  Google Scholar 

  78. Tichit D, Rolland A, Prinetto F, Fetter G, Martínez-Ortiz MJ, Valenzuela MA, Bosch P (2002) Comparison of the structural and acid-base properties of Ga- and Al-containing layered double hydroxides obtained by microwave irradiation and conventional ageing of synthesis gels. J Mater Chem 12:3832

    Article  CAS  Google Scholar 

  79. Castro LV, Fetter G, Valenzuela MA, Bosch P (2004) Condensación aldólica catalizada con hidrotalcitas intercaladas. In: XIX symposium Iberoam catalysis proceedings, Mérida, Yucatán, México, Spanish, pp 2714

    Google Scholar 

  80. Zhang ZJ, Mei XJ, Fen LR, Lu SJ, Qiu FL (2004) Preparation of PO43-, P2O74- anion-pillared nanocrystalline Mg-Al and Zn-Al layered double hydroxides in microwave fields. Chinese Chem Lett 15:867

    CAS  Google Scholar 

  81. Martinez-Gallegos S, Herrero M, Rives V (2008) In situ microwave-assisted polymerization of polyethylene terephtalate in layered double hydroxides. J Appl Polymer Sci 109:1388

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was developed in the frame of a sabbatical visit of G. Fetter to the Instituto de Investigaciones en Materiales, UNAM. The financial support of CONACYT is gratefully recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geolar Fetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fetter, G., Bosch, P. (2010). Microwave Effect on Clay Pillaring. In: Gil, A., Korili, S., Trujillano, R., Vicente, M. (eds) Pillared Clays and Related Catalysts. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6670-4_1

Download citation

Publish with us

Policies and ethics