Skip to main content

Plum

  • Chapter
  • First Online:
Fruit Breeding

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 8))

Abstract

There are 19–40 species of plum, depending on taxonomist, that have originated in Europe, Asia and America. From this great diversity only two species, the hexaploid European plum (Prunus domestica) and the diploid Japanese plum (P. salicina and hybrids), are of worldwide commercial significance. The European plums were cultivated in Roman times and stone remnants indicate human use 6,000 years ago. Their origin is uncertain but may have involved P. cerasifera and possibly P. spinosa as ancestors. The rich diversity and history of European plums is reflected in the many pomological groups including Prunes, Gages, Mirabelles, Damsons, Bullaces and St Juliens. Today, European plum breeding concentrates on selection for resistance to Sharka disease caused by the Plum Pox Virus which limits production in many countries. Resistant cultivars have been developed using both conventional and genetic transformation techniques. Japanese plums originated in China but were introduced to the west, from Japan, only 150 years ago. Luther Burbank hybridised them with other plum species with the result that most modern cultivars are multi-species amalgams. This heterogeneity, plus the high heterozygosity from outcrossing, means that large seedling populations are required in cultivar development. Efficient cross-pollination and seedling management techniques are required for these large populations. The trend of interspecific hybridisation continues today with four of the top 20 Californian cultivars being interspecifics involving plum and apricot. Fruit quality, functional food value, productivity and adaptation through disease resistance, chilling requirement and phenology are selection criteria in both Japanese and European plum breeding. Molecular markers are used for selection of self-compatibility and nematode resistance and for diversity and taxonomic studies. Most new rootstock releases are clonally propagated and of interspecific origin. The priorities for plum and peach rootstock breeding are similar and rootstocks developed for peach are sometimes also used for plum. American plum species, ancient Oriental cultivars and autochthonous European cultivars represent important germplasm resources that require preservation for use in future breeding.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4419-0763-9_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi, N., Holford, P., McGlasson, W.B., and Mizrahi, Y. 1997. Ripening behaviour and responses to propylene in four cultivars of Japanese type plums. Postharvest Biol. Tech. 12:21–34.

    Article  CAS  Google Scholar 

  • Ahmad, R., Potter, D., and Southwick, S.M. 2004. Identification and characterization of plum and pluot cultivars by microsatellite markers. J. Hort. Sci. Biotech. 79:164–169.

    Google Scholar 

  • Andersen, E.T., and Weir, T.S. 1967. Prunus hybrids, selections and cultivars, at the University of Minnesota fruit breeding farm. Univ. Minn. Agric. Exp. Sta. Tech. Bull. 252.

    Google Scholar 

  • Andersen, R.L., Freer, J., and Watson, J. 2006a. New plum Jam SessionTM. New York Fruit Quart. 14:24.

    Google Scholar 

  • Andersen, R.L., Freer, J., and Watson, J. 2006b. New plum Blues JamTM. New York Fruit Quart. 14:26.

    Google Scholar 

  • Aranzana, M.J. Pineda, A., Cosson, P., Dirlewanger, E., Ascasiber, J., Cipriano, G., Ryder, C.D., Testolin, R., Abbott, A., King, G.J., Iezzoni, A.F., Arus, P. 2003. A set of simple-sequence repeat (SSR) markers covering the Prunus Genome. Theor.Appl. Gen., 108:819–825.

    Google Scholar 

  • Arbeloa, A., Daorden, M.E., Garcia, E., Wunsch, A., Hormaza, J.I., and Marin, J.A. 2006. Significant effect of accidental pollinations on the progeny of low setting Prunus interspecific crosses. Euphytica 147:389–394.

    Article  Google Scholar 

  • Arjmandi, B.H., Khalil, D.A., Lucas, E.A., Georgis, A., Stoecker, B.J., Hardin, C., Payton, M.E., and Wild, R.A. 2002. Dried plums improve indices of bone formation in postmenopausal women. J. Wom. Health Gender-Based Med. 11:61–68.

    Article  Google Scholar 

  • Ashton, R.W. 2008. Plums of North America. Third Millennium Publishing, Temple, Arizona.

    Google Scholar 

  • Atanasoff, D. 1935. Mosaic of stone fruits. Phytopathologische Zeitschrift 8, 259–284.

    Google Scholar 

  • Bailey, J.S. 1944. The beach plum in Massachusetts. Mass. Agric. Exp. Sta. Bull. 422.

    Google Scholar 

  • Bailey, L.H. 1892. The cultivated native plums and cherries. Corn. Univ. Agric. Exp. Sta. Bull. 38.

    Google Scholar 

  • Beckman, T.G. and Lang, G.A. 2003. Rootstock breeding for stone fruits. Acta Hort. 622:531–550.

    Google Scholar 

  • Beckman, T.G., Chaparro, J.X. and Sherman, W.B. 2008. ‘Sharpe’, a clonal plum rootstock for peach. HortScience 43:2236–2237.

    Google Scholar 

  • Bellini, E., and Nencetti, V. 2002a. “Dofi-Giudy”: A new early red Japanese plum. Acta Hort. 577:221–222.

    Google Scholar 

  • Bellini, E., and Nencetti, V. 2002b. “Dofi-Sandra”: A new early black Japanese plum. Acta Hort. 577:223–224.

    Google Scholar 

  • Bellini, E., Nencetti, V., and Nin, S. 2002. Genetic improvement of plum in Florence. Acta Hort. 577:19–24.

    Google Scholar 

  • Bellini, E., Nencetti, V., Nin, S., and Paraluppi, S. 1998. Ripening time within a cross-derived population of Japanese plum. Acta Hort. 478:61–66.

    Google Scholar 

  • Beppu, K., Yamane, H., Yaegaki, H., Yamaguchi, M., Kataoka, I., Tao, R. 2002. Diversity of S-RNase genes and S-haplotypes in Japanese plum (Prunus salicina Lindl). J. Hort. Sci. Biotech., 77:658–664.

    CAS  Google Scholar 

  • Beppu, K., Takemoto, Y., Yamane, H., Yaegaki, H., Yamaguchi, M., Kataoka, I., Tao, R. 2003. Determination of S-haplotypes of Japanese plum (Prunus salicina Lindl.) cultivars by cross-pollination tests. J. Hort. Sci. Biotech., 78:315–318.

    Google Scholar 

  • Beppu, K., Yamane, H., Yaegaki, H., Yamaguchi, M., Tao, R. and Kataoka, I. 2004. Analysis of S-RNase genes in self-compatible cultivars of Japanese plum, ‘Methley’,‘Karari’ and ‘Kosyu’. J. Japan. Soc. Hort. Sci. 73(Suppl. 2):253.(In Japanese).

    Google Scholar 

  • Beppu, K., Komatsu, N., Yamane, H., Yaegaki, H., Yamaguchi, M., Tao, R., and Kataoka, I. 2005. S-e-haplotype confers self-compatibility in Japanese plum (Prunus salicina Lindl.). J. Hort. Sci. Biotech. 80:760–764.

    CAS  Google Scholar 

  • Beppu, K., Syogase, K., Yamane, H., Tao, R., and Kataoka, I. 2010. Inheritance of self-compatibility conferred by the Se-haplotype of Japanese plum and development of Se-RNase gene-specific PCR primers. J. Hort. Sci. Biotech. 85:215–218.

    CAS  Google Scholar 

  • Blazek, J. 2007. A survey of the genetic resources used in plum breeding. Acta Hort. 734:31–45.

    Google Scholar 

  • Boonprakob, U., Byrne, D.H., Graham, C.J., Okie, W.R., Beckman, T., and Smith, B.R. 2001. Genetic relationships among cultivated diploid plums and their progenitors as determined by RAPD markers. J. Amer. Soc. Hort. Sci. 126:451–461.

    CAS  Google Scholar 

  • Boonprakob, U., and Byrne, D.H. 2003. Species composition of Japanese plum founding clones as revealed by RAPD markers. Acta Hort. 622:473–476.

    CAS  Google Scholar 

  • Botu, M. 1998. Inheritance of some characteristics to the offspring and evaluation of the genitors’ value for plum. Acta Hort. 478:155–162.

    Google Scholar 

  • Brooks, R.M., and Olmo, H.P. 1997. Register of Fruit & Nut Varieties. 3rd ed. ASHS Press, Alexandria, Virginia.

    Google Scholar 

  • Butac, M., and Budan, S. 2009. Evaluation of local plum varieties (Prunus domestica L.) from the Romanian national collection. Acta Hort. 814:91–94.

    Google Scholar 

  • Buttner, R. 2001. Prunus, p. 513–525, In P. Hanelt, ed. Mansfields Encyclopedia of Agricultural and Horticultural Crops. Inst. Plant Genet. Crop Plant Res.

    Google Scholar 

  • Byrne, D.H. 1989. Inbreeding, coancestry, and founding clones of Japanese-type plums of California and the southeastern United States. J. Amer. Soc. Hort. Sci. 114:699–705.

    Google Scholar 

  • Byrne, D.H. 1990. Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J. Hered. 81:68–71.

    Google Scholar 

  • Byrne, D.H., Noratto, G., Cisneros-Zevallos, L., Porter, W., and Vizzotto, M. 2009. Health benefits of peach, nectarine and plums. Acta Hort. 841:267–274.

    CAS  Google Scholar 

  • Callahan, A. and Scorza, R. 2007. Effects of a peach antisense ACC oxidase gene on plum fruit quality. Acta Hort. 738:567–573.

    CAS  Google Scholar 

  • Câmara Machado, A., Katinger, H. Câmara Machado, M.L. 2007. Coat protein-mediated protection against plum pox virus in herbaceous model plants and transformation of apricot and plum. Euphytica 77:129–134.

    Article  Google Scholar 

  • Cevallos-Casals, B.A., Byrne, D., Okie, W.R., and Cisneros-Zevallos, L. 2006. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem. 96:273–280.

    Article  CAS  Google Scholar 

  • Cipriani, G., Lot, G., Huang, W-G., Marrazzo, M.T., Peterlunger, E., Testolin, R. 1999. AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L.) Batsch): isolation, characterization and cross-species amplification in Prunus. Theor. Appl. Gen. 99:65–72.

    Article  CAS  Google Scholar 

  • Clarke, J.B., Tobutt, K.R. 2003. Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol. Ecol. Notes 3:578–580.

    Article  CAS  Google Scholar 

  • Crane, M.B., and Lawrence, W.J.C. 1934. The genetics of garden plants. MacMillan and Co., Ltd., London, UK.

    Google Scholar 

  • Crawford, M. 1997. Fruit Varieties Resistant to Pests and Diseases. Agroforestry Res. Trust, Devon, UK.

    Google Scholar 

  • Crisosto, C.H., Garner, D., Crisosto, G.M., and Bowerman, E. 2004. Increasing ‘Blackamber’ plum (Prunus salicina Lindell) consumer acceptance. Postharvest Biol. Technol. 34:237–244.

    Article  Google Scholar 

  • Crisosto, C.H., Crisosto, G.M., Echeverria, G., and Puy, J. 2007. Segregation of plum and pluot cultivars according to their organoleptic characteristics. Postharvest Biol. Technol. 44:271–276.

    Article  CAS  Google Scholar 

  • Crow, J.F. 2001. Plant breeding giants: Burbank, the artist; Vavilov, the scientist. Genetics 158:1391–1395.

    PubMed  CAS  Google Scholar 

  • CTFA. 2009. California Tree Fruit Agreement, Annual Report [Online] http://www.eatcaliforniafruit.com/.

  • Cullinan, F.P. 1937. Improvement of stone fruits., p. 665–748 U.S. Dept. Agric. Yearbook of Agriculture. U.S. Govt. Printing Office, Washington.

    Google Scholar 

  • Cummins, J.N. and Aldwinckle, H.S. 1983. Rootstock breeding. p. 294–327. In J.N. Moore and J. Janick, eds. Methods In Fruit Breeding. Purdue Univ. Press, West Lafayette, Indiana.

    Google Scholar 

  • Dalbó., M.A., Klabunde, G.H.F., Nodari, R.O., Fernandes, D., Basso, M.F., 2010. Evolution of the response of segregating populations of plums and the association with microsatellite markers of leaf scald. Crop Breed. Appl. Biotech. 10:337–344.

    Article  Google Scholar 

  • Damiano, C., Gentile, A., Monticelli, S., Scorza, R., Kondakova, V., Todorovska, E., Kamenova, I., Badjiakov, I., Atanassov, A. 2007. Improving regeneration and transformation for resistance to Sharka in Prunus. Acta Hort. 738:583–587.

    Google Scholar 

  • Daorden, M.E., Marin, J.A., and Arbeloa, A. 2004. Stratification temperature affects the in vitro germination of immature Prunus embryos. Acta Hort.658:135–140.

    Google Scholar 

  • Day, L.H. 1953. Rootstocks for Stone Fruits. Calif. Agric. Exp. Sta. Ext. Bull. 736.

    Google Scholar 

  • DeBuse, C., Shaw, D.V., and DeJong, T. 2007. Heritabilities of seedling traits in a Prunus domestica (L.) breeding population. Acta Hort. 734:63–67.

    Google Scholar 

  • DeJong, T.M., Doyle, J.F. and DeBuse, C.J. 2002. Development of a prune breeding program in California. Acta Hort. 577:151–153.

    Google Scholar 

  • Dikeman, C.L., Bauer, L.L., and Fahey, G.C. 2004. Carbohydrate composition of selected plum/prune preparations. J. Agric. Food Chem. 52:853–859.

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger, E., Cosson, P., Tavaud, M., Aranzana, M.J., Poizat, C., Zanetto, A., Arus, P., Laigret, F. 2002. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor.Appl. Gen., 105:127–138.

    Google Scholar 

  • Dirlewanger, E., Cosson, P., Howad, W., Capdeville, G., Bosselut, N., Claverie, M., Voisin, R., Poizat, C., Lafargue, B., Baron, O., Laigret, F., Kleinhentz, M., Arús, P., Esmejaud, D. 2004. Microssatelite genetic linkage maps of mirobalan plum and almond-peach hybrid - Location of root-knot nematode resistance genes. Theor. Appl. Genet. 109:827–838.

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger, E., Cosson, P., Boudehri, K., Renaud, C., Capdeville, G., Tauzin, Y., Laigret, F., Moing A., 2006. Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet. Genom. 3:1–3.

    Google Scholar 

  • Dondini, L., Lain, O., Geuna, F., Banfi, R., Gaiotti, F., Tartarini, S., Bassi, D., Testolin, R. 2006. Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet. Genom. 3:239–249.

    Article  Google Scholar 

  • Dorsey, M.J., and Bushnell, J. 1925. Plum investigations II. The inheritance of hardiness. Univ. Minn. Agric. Exp. Sta. Tech. Bull. 32.

    Google Scholar 

  • Ducroquet, J.P., Dalbó, M.A. 2007. SCS 409 Camila e SCS 410 Piuna - Novas cultivares de ameixeira com resistência à escaldadura das folhas. Agropecuária Catarinense 20:67–70.

    Google Scholar 

  • El-Agamy, S.Z., and Sherman, W.B. 1987. Sequence of pollination in relation to fruit set and progeny produced in peach (Prunus persica L. Batsch). J. Hort. Sci. 62:469–473.

    Google Scholar 

  • Ercisli, S. 2004. A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evolution 51:419–435.

    Article  Google Scholar 

  • Erturk, Y., Ercisli, S., Maghradze, D., Orhan, E., and Agar, G. 2009. An assessment of genetic variability and relationships among wild-grown blackthorn (Prunus spinosa L.) plants based on RAPD markers. Genet. Mol. Res. 8:1238–1244.

    Article  PubMed  CAS  Google Scholar 

  • FAO. 2006. Food and Agriculture Organisation of the United Nations - Crop Production [Online] http://faostat.fao.org.

  • Faust, M., and Surányi, D. 1999. Origin and dissemination of plums. Hort. Rev. 23:179–231.

    Google Scholar 

  • Fogle, H.W. 1978. Plum improvement in the United States. Acta Hort. 74:35–40.

    Google Scholar 

  • Gercheva, P., and Zhivondov, A. 2002. Embryo rescue of early ripening plum cultivars. Acta Hort. 577:165–168.

    Google Scholar 

  • Gil, M.I., Tomas-Barberan, F.A., Hess-Pierce, B., and Kader, A.A. 2002. Antioxidant capacities, phenolic compounds, carotenoids, and Vitamin C contents of nectarine, peach and plum cultivars from California. J. Agric. Food Chem. 50:4976–4982.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, E., and Ledbetter, C. 1993. Transmission of Biochemical Flavor Constituents from Apricot and Plum to Their Interspecific Hybrid. Plant Breeding 111:236–241.

    Article  CAS  Google Scholar 

  • Gomez, E., and Ledbetter, C.A. 1994. Comparative-Study of the Aromatic Profiles of 2 Different Plum Species – Prunus salicina Lindl and Prunus simonii L. J. Sci. Food Agric. 65:111–115.

    Article  CAS  Google Scholar 

  • Gomez, E., and Ledbetter, C.A. 1997. Development of volatile compounds during fruit maturation: Characterization of apricot and plum x apricot hybrids. J. Sci. Food Agric. 74:541–546.

    Article  CAS  Google Scholar 

  • Gomez-Plaza, E., and Ledbetter, C. 2010. The flavor of plums. p.415–430. In: Y.H. Hui (ed.) Handbook of fruit and vegetable flavors. John Wiley & Sons Inc.

    Google Scholar 

  • Gomez, E., Ledbetter, C.A., and Hartsell, P.L. 1993. Volatile Compounds in Apricot, Plum, and Their Interspecific Hybrids. Journal of Agricultural and Food Chemistry 41:1669–1676.

    Article  CAS  Google Scholar 

  • Gonzalez-Padilla,I.M., Webb,K., Scorza, R. 2003. Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.).Plant Cell Reports 22:38–45.

    Article  PubMed  CAS  Google Scholar 

  • Hagen, L.S., Chaib, J., Fady, B., Decroocq, V., Bouchet, J.P., Lambert, P., Audergon, J.M. 2004. Genomic and cDNA microsatellite from apricot (Prunus armeniaca L.). Mol. Ecol. Notes 4:742–745.

    CAS  Google Scholar 

  • Hansche, P.E., Hesse, C.O., and Beres, V. 1975. Inheritance of Fruit Size, Soluble Solids, and Ripening Date in Prunus domestica Cv Agen. J. Amer. Soc. Hort. Sci. 100:522–524.

    Google Scholar 

  • Hartmann, W., and Neumüller, M. 2009. Plum breeding, p. 1–71 Breeding Plantation Tree Crops: Temperate Species. Springer, New York.

    Google Scholar 

  • Hedrick, U.P. 1911. The plums of New York N.Y. Agric. Exp, Sta. 18th Ann. Rep. Vol 3, Part II, Geneva.

    Google Scholar 

  • Hily, J.-M., Scorza, R., Webb, K., Ravelonandro, M. 2005. Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. Mol Plant-Microbe Interact. 18:794–799.

    Article  PubMed  CAS  Google Scholar 

  • Howard, W.L. 1945. Luther Burbank’s plant contributions. Cal. Agric. Exp. Sta. Bull. 691.

    Google Scholar 

  • Hunter, A.W.S., and Bragdo, M. 1958. The cytology of three hybrids between diploid and hexaploid plums (Prunus spp.). Proc. 10th Int. Congr. Genet., Montreal 2:128. Abstract from Knight, R.L. 1969. Abstract Bibliography of Fruit Breeding and Genetics to 1965 Prunus. CAB, London.

    Google Scholar 

  • Jacob, H.B. 2007a. Experience with new mirabelle cultivars from Geisenheim: ‘Bellamira’(R) and ‘Miragrande’(R) as fruit for the fresh market and for distillation. Acta Hort. 734:347–351.

    Google Scholar 

  • Jacob, H.B. 2007b. Twenty-five years plum breeding in Geisenheim, Germany: breeding targets and previous realisations. Acta Hort. 734:341–346.

    Google Scholar 

  • Janick, J., and Paull, R.E. 2008. The Encyclopedia of Fruit & Nuts CABI, Wallingford UK.

    Google Scholar 

  • Joobeur, T., Periam, N., de Vicente, M.V., King, G.J., Arus, P. 2000. Development of a second generation linkage map for almond using RAPD and SSR markers. Genome, 43:649–655.

    Article  PubMed  CAS  Google Scholar 

  • Jun, J.H., and Chung, K.H. 2007. Interspecific cross compatibility among plum, apricot and plumcot. Korean J. Hort. Sci. Tech. 25:217–222.

    Google Scholar 

  • Jun, J.H., Chung, K.H., Kang, S.J., Kwack, Y.B., Park, K.S., Yun, H.K., and Jeong, S.B. 2008. ‘Honey Red’, an early maturing Japanese plum. J. Amer. Pom. Soc. 62:27–29.

    Google Scholar 

  • Jun, J.H., Kwon, J.H., and Chung, K.H. 2009. Morphological Characteristics of Interspecific Hybrids between Japanese Plum (Prunus salicina Lindl.) cv. Soldam and Apricot (P. armeniaca L.) cv. Harcot. Korean J. Hort. Sci. Tech. 27:269–274.

    CAS  Google Scholar 

  • Kataoka, I., Sugiura, A., and Tomana, T. 1988. Interspecific Hybridization between Microcerasus and Other Prunus Spp. J. Jap. Soc. Hort. Sci. 56:398–407 (English summary).

    Google Scholar 

  • Katayama, H., and Uematsu, C. 2005. Structural analysis of chloroplast DNA in Prunus (Rosaceae): evolution, genetic diversity and unequal mutations. Theor. App. Genet. 111:1430–1439.

    Article  CAS  Google Scholar 

  • Kaufmane, E., Ikase, L., Trajkovski, V., and Lacis, G. 2002. Evaluation and characterization of plum genetic resources in Sweden and Latvia. Acta Hort. 577:207–213.

    Google Scholar 

  • Khoshbakht, K., and Hammer, K. 2005. Savadkouh (Iran) - an evolutionary centre for fruit trees and shrubs. Genet. Resources Crop Evol. 00:1–11.

    Google Scholar 

  • Kim, D.O., Jeong, S.W., and Lee, C.Y. 2003. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81:321–326.

    Article  CAS  Google Scholar 

  • Kim, H.J., Yu, M.H., and Lee, I.S. 2008. Inhibitory effects of methanol extract of plum (Prunus salicina L., cv. ‘Soldam’) fruits against benzo(alpha)pyrene-induced toxicity in mice. Food Chem. Tox. 46:3407–3413.

    CAS  Google Scholar 

  • La Rue, J.H., and Johnson, R.S. 1989. Peaches, Plums and Nectarines - Growing and Handling for Fresh Market. Univ. of Cal., Oakland, California.

    Google Scholar 

  • Lea, M.A., Ibeh, C., desBordes, C., Vizzotto, M., Cisneros-Zevallos, L., Byrne, D.H., Okie, W.R. and Moyer, M.P. 2008. Inhibition of growth and induction of differentiation of colon cancer cells by peach and plum phenolic compounds. Anticancer Res. 28:2067–2076.

    PubMed  CAS  Google Scholar 

  • Ledbetter, C.A., Peterson, S.J., and Burgos, L. 1994. Variability of horticultural characteristics among plumcot progenies. J. Genet. Breed. 48:117–123.

    Google Scholar 

  • Lespinasse, Y., Durel, C.E., Eskes, A., Esmenjaud, D., and Poessel, J.L. 2003. Resistance to biotic stress in fruit trees. Acta Hort. 622:303–315.

    Google Scholar 

  • Lin, P., and Shi, L. 1989. The discovery and distribution of Ili wild Prunus domestika (P. communis Fritsch) in Xinjiang, p. 282–286 International Symposium on Horticultural Germplasm, Cultivated and Wild. Part 1. Fruit Trees. Internat. Acad. Pub. Beijing, China.

    Google Scholar 

  • Liu, W. 2007. Plum production in China. Acta Hort. 734:89–92.

    Google Scholar 

  • Liu, W.S., Liu, D.C., Feng, C.J., Zhang, A.M., and Li, S.H. 2006. Genetic diversity and phylogenetic relationships in plum germplasm resources revealed by RAPD markers. J. Hort. Sci. Biotech. 81:242–250.

    CAS  Google Scholar 

  • Liu, W.S., Liu, D.C., Zhang, A.M., Feng, C.J., Yang, J.M., Yoon, J.H., and Li, S.H. 2007a. Genetic diversity and phylogenetic relationships among plum germplasm resources in China assessed with inter-simple sequence repeat markers. J. Amer. Soc. Hort. Sci. 132:619–628.

    CAS  Google Scholar 

  • Liu, W., Chen, X.S., Liu, G.J., Liang, Q., He, T.M., and Feng, J.R. 2007b. Interspecific hybridization of Prunus persica with P. armeniaca and P. salicina using embryo rescue. Plant Cell Tissue and Organ Culture 88:289–299.

    Article  Google Scholar 

  • Lopes, M.S., Sefc, K.M., Laimer, M., Camara Machado, A. 2002. Identification of microsatellite loci in apricot. Molecular Ecology Notes, 2:24–26.

    Article  CAS  Google Scholar 

  • Lozano, M., Vidal-Aragon, M.C., Hernandez, M.T., Ayuso, M.C., Bernalte, M.J., Garcia, J., and Velardo, B. 2009. Physicochemical and nutritional properties and volatile constituents of six Japanese plum (Prunus salicina Lindl.) cultivars. European Food Res. Tech. 228:403-410.

    CAS  Google Scholar 

  • Malinowski, T., Cambra, M., Capote, N., Zawadzka, B., Gorris, M.T., Scorza, R., Ravelonandro, M. 2006. Field trials of plum clones transformed with the Plum pox virus coat protein (PPV-CP) gene. Plant Dis., 90:1012–1018.

    Article  CAS  Google Scholar 

  • Mante, S., Morgens, P. H., Scorza, R., Cordts, J. M., Callahan, A. M. 1991. Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants. BioTech. 9:853–857.

    Article  CAS  Google Scholar 

  • Messina, R., Lain, O., Marrazzo, M.T., Cipriani, G., Testolin, R. 2004. New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 4:432–434.

    Article  CAS  Google Scholar 

  • Mikhailov, R.V. and Dolgov, S.V., 2007. Transgenic plum (Prunus domestica L.) plants obtained by Agrobacterium-mediated transformation of leaf explants with use of various selective agents. Acta Hort. 738:613–623.

    Google Scholar 

  • Minev, I., and Balev, M. 2002. Interspecific hybrids of the Prunus genus bred at RIMSA, Troyan, Acta Hort. 577:195–198.

    Google Scholar 

  • Mneija, M., Garcia-Mas, J., Howad, W., Badenes, M.L., Arús, P. 2004. Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina) are highly polymorphic and transferable to peach and almond. Mol. Ecol. Notes 4:163–166.

    Article  CAS  Google Scholar 

  • Mneija, M., Garcia-Mas, J., Howad, W., Arús, P. 2005. Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol. Ecol. Notes 5:531–535.

    Article  CAS  Google Scholar 

  • Moraes, L.K.A., 2005. Avanços no mapeamento genético da resistência à escaldadura das folhas em ameixeira. MSc. Thesis, UFSC, 96 p.

    Google Scholar 

  • Moreno, M.A., Tabuenca, M.C. and Cambra, R. 1995. Adesto 101, a plum rootstock for peaches and other stone fruit. HortScience 30:1314–1315.

    Google Scholar 

  • Moreno, M.A. 2004. Breeding and selection of Prunus rootstocks at the Aula Dei Experimental Station, Zaragoza, Spain. Acta Hort. 658:519–528.

    Google Scholar 

  • Nagel, A.K., Schnabel, G., Petri, C., Scorza, R. 2008. Generation and characterization of transgenic plum lines expressing the Gastrodia antifungal protein. HortScience, 43:1514–1521.

    Google Scholar 

  • Nakasu, B.H., Bassols, M., and Feliciano, A.J. 1981. Temperate fruit breeding in Brazil. Fruit Var. J. 35:114–122. NC-140. 2002.

    Google Scholar 

  • NC-140, 2002. NC-140 Regional Rootstock Research Project. [Online] http://www.nc140.org/.

  • Neumüller, M., Lanzl, S., Hartmann, W., Feucht, W., and Treutter, D. 2009. Towards an understanding of the inheritance of hypersensitivity resistance against the sharka virus in European plum (Prunus domestica L.): generation of interspecific hybrids with lower ploidy levels. Acta Hort. 814:721–726.

    Google Scholar 

  • Nicotra, A. and Moser, L. 1997. Two new plum rootstocks for peach and nectarines: Penta and Tetra. Acta Hort. 451:269–271.

    Google Scholar 

  • Nunes, C., Coimbra, M.A., Saraiva, J., and Rocha, S.M. 2008. Study of the volatile components of a candied plum and estimation of their contribution to the aroma. Food Chem. 111:897–905.

    Article  CAS  Google Scholar 

  • Nunez de Gonzalez, M.T., Hafley, B.S., Boleman, R.M., Miller, R.K., Rhee, K.S., and Keeton, J.T. 2008. Antioxidant properties of plum concentrates and powder in precooked roast beef to reduce lipid oxidation. Meat Sci. 80:997–1004.

    Article  PubMed  CAS  Google Scholar 

  • Okie, W.R. 1987. Plum rootstocks, p. 321–360, In R. C. Rom and R. F. Carlson, eds. Rootstocks for fruit crops. Wiley, New York.

    Google Scholar 

  • Okie, W.R. 2001. Plum crazy: Rediscovering our lost Prunus resources. HortScience 36:209–213.

    Google Scholar 

  • Okie, W.R. 2006. Introgression of Prunus species in plum. New York Fruit Quart. 14:29–37.

    Google Scholar 

  • Okie, W.R., and Hancock, J.F. 2008. Plums, pp. 337–358 Temperate Fruit Crop Breeding. Springer, New York.

    Google Scholar 

  • Okie, W.R., and Ramming, D.W. 1999. Plum breeding worldwide. HortTechnology 9:162–176.

    Google Scholar 

  • Okie, W.R., and Weinberger, J.H. 1996. Plums, p. 559–607, In J. Janick and J. N. Moore, eds. Fruit Breeding, Volume I: Tree and Tropical Fruits. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Olden, E.J. 1965. Interspecific plum crosses. Res. Rep. Balsgard Fruit Breed. Inst. No. 1. 58pp. Abstract from Knight, R.L. 1969. Abstract Bibliography of Fruit Breeding and Genetics to 1965 Prunus. CAB, London

    Google Scholar 

  • Ortiz, A., Renaud, R., Calzada, I., and Ritter, E. 1997. Analysis of plum cultivars with RAPD markers. J. Hort. Sci. 72:1–9.

    Article  CAS  Google Scholar 

  • Pascal, T., Levigneron, A., Kervella, J., and Nguyen-The, C. 1994. Evaluation of two screening methods for resistance of apricot, plum and peach to Monilinia laxa. Euphytica 77:19–23.

    Article  Google Scholar 

  • Paunovic, S.A. and Misic, P.D. 1975. The study of inheritance in the plum progenies. Acta Hort. 48:91–109.

    Google Scholar 

  • Petri, C., Webb, K., Hily, J.-M., Dardick, C., Scorza, R. 2008. High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp.. Mol. Breed. 22:581–591.

    Article  CAS  Google Scholar 

  • Petri, C., Scorza, R., Dardick, C. 2009a. Genetic engineering of plum (Prunus domestica L.) for plant improvement and genomics research in Rosaceae. p.277–290, In: K.M. Folta and S.E. Gardiner (eds.) Genetics and genomics of Rosaceae, Plant genetics and genomics : crops and models Vol. 6. Springer, New York.

    Google Scholar 

  • Petri, C., Webb, K., Dardick, C., Scorza, R. 2009b. A high-throughput transformation system in plum (Prunus domestica L.) useful for functional genomics in Rosaceae. Acta Hort. 839:375–379.

    CAS  Google Scholar 

  • Petrovic, R., Miletic, R., and Mitrovic, M. 2002. The results of the study on autochthonous plum cultivars in Eastern Serbia. Acta Hort. 577:239–243.

    Google Scholar 

  • Prunus Crop Germplasm Committee. 2010. Prunus vulnerability statement USDA - ARS National Plant Germplasm System [Online]. Available by http://www.ars-grin.gov/npgs/cgc_reports/prun2010.doc.

  • Qiao, Y.S., Fang, J.G., Cong, Y., Zhou, J., and Zhang, Z. 2007. Analysis of genetic diversity of Japanese plum cultivars based on RAPD, ISSR and SSR markers. Acta Hort. 763:177–183.

    CAS  Google Scholar 

  • Ramming, D.W. 1983. Embryo culture, p. 136–144, In J. N. Moore and J. Janick, eds. Methods in Fruit Breeding. Purdue Univ. Press, West Lafayette, Indiana.

    Google Scholar 

  • Ramming, D.W., and Cociu, V. 1991. Plums (Prunus), p. 235–287, In J. N. Moore and J. R. J. Ballington, eds. Genetic Resources of Temperate Fruit and Nut Crops. ISHS, Wageningen.

    Google Scholar 

  • Ravelonandro, M., Monsion, M., Teycheney, P.Y., Delbos, R., Dunez, J. 1992. Construction of a chimeric viral gene expressing plum pox virus coat protein. Gene 120:167–173.

    Article  PubMed  CAS  Google Scholar 

  • Reales, A., Sargent, D.J., Tobutt, K.R., and Rivera, D. 2010. Phylogenetics of Eurasian plums, Prunus L. section Prunus (Rosaceae), according to coding and non-coding chloroplast DNA sequences. Tree Genet. Genom. 6:37–45.

    Google Scholar 

  • Rehder, A. 1954. Manual of cultivated trees and shrubs. 2nd ed. Dioscorides Press, Portland.

    Google Scholar 

  • Reid, W., and Gast, K.L.B. 1993. The potential for domestication and utilization of native plums in Kansas, p. 520–523, In J. Janick and J. E. Simon, eds. New Crops. Wiley, New York.

    Google Scholar 

  • Renaud, R. 1975. A study of inheritance in plum intraspecific cross-breeding. Acta Hort. 48:79–82.

    Google Scholar 

  • Renaud, R., and Salesses, G. 1994. Interspecific hybridization and rootstocks breeding for European plums. Acta Hort. 359:97–100.

    Google Scholar 

  • Reynders-Aloisi, S., and Grellet, F. 1994. Characterization of the ribosomal DNA units in two related Prunus species (P. cerasifera and P. spinosa). Plant Cell Reports 13:641–646.

    Article  CAS  Google Scholar 

  • Roach, F.A. 1985. Plums, p. 142–460 Cultivated Fruits of Britain, their Origin and History. Basil Blackwell, Oxford, UK.

    Google Scholar 

  • Roberts, A.N., and Hammers, L.A. 1951. The native Pacific plum in Oregon. Oregon State Coll. Agric. Exp. Sta. Bull. 502.

    Google Scholar 

  • Rohrer, J.R., Ahmad, R., Southwick, S.M., and Potter, D. 2004. Microsatellite analysis of relationships among North American plums (Prunus sect. Prunocerasus, Rosaceae). Plant Syst. Evol. 244:69–75.

    CAS  Google Scholar 

  • Rupasinghe, H.P.V., Jayasankar, S., and Lay, W. 2006. Variation in total phenolics and antioxidant capacity among European plum genotypes. Scientia Hort. 108:243–246.

    Article  CAS  Google Scholar 

  • Salinero, C., Aguin, O., and Sainz, M.J. 2003. Fruit yield and characteristics of three cultivars of mirabelle plum (Prunus insititia var. syriaca) in northwest Spain. J. Amer. Pom. Soc. 57:70–75.

    Google Scholar 

  • Sapir, G., Stern, R.A., Eisikowitch, D., Goldway, M. 2004. Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis. J. Hort. Sci. Biotech., 79:223–227.

    CAS  Google Scholar 

  • Scorza, R., Callahan, A., Levy, L., Damsteegt, V., Webb, K., Ravelonandro, M. 2001. Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res., 10:201–209.

    Article  PubMed  CAS  Google Scholar 

  • Scorza, R., Hily, J.-M., Callahan, A., Malinowski, T., Cambra, M., Capote, N., Zagrai, I., Damsteegt, V., Briard, P., Ravelonandro, M. 2007. Deregulation of Plum Pox transgenic plum ‘Honeysweet’. Acta Hort., 738:669–673.

    Google Scholar 

  • Shaw, J., and Small, R.L. 2004. Addressing the “hardest puzzle in American pomology:” Phylogeny of Prunus sect. Prunocerasus (Rosaceae) based on seven noncoding chloroplast DNA regions. Am. J. Bot. 91:985–996.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, J., and Small, R.L. 2005. Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). Am. J. Bot. 92:2011–2030.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, W.B. and Lyrene, P.M. 1983. Handling seedling populations, p. 66–73, In J. N. Moore and J. Janick, eds. Methods In Fruit Breeding. Purdue Univ. Press, West Lafayette, Indiana.

    Google Scholar 

  • Sherman, W.B. and Lyrene, P.M. 1998. ‘Gulfbeauty’ and ‘Gulfblaze’ Japanese-type plums. Fruit Var. J.52:19–19.

    Google Scholar 

  • Sherman, W.B., Topp, B.L., and Lyrene, P.M. 1992. Breeding low-chill Japanese-type plums for subtropical climates. Acta Hort. 317:149–153.

    Google Scholar 

  • Sosinski, B., Gannavarapu, M., Hage, L.D., Beck, E., King, G.J., Ryder, C.D., Rajapakse, S., Baird, W.V., Ballard, R.E., Abbott, A.G. 2000. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Gen., 101:421–428.

    Google Scholar 

  • Srinivasan, C., Liu, Z., Scorza, R. 2011a. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L). Plant Cell Reports 30:655–664.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, C., Scorza, R., Callahan, A., Dardick, C. 2011b. Development of very early flowering and normal fruiting plum with fertile seeds. United States Patent Application Pub. US 2011/0067147.

    Google Scholar 

  • Stacewicz-Sapuntzakis, M., Bowen, P.E., Hussain, E.A., Damayanti-Wood, B.I., and Farnsworth, N.R. 2001. Chemical composition and potential health effects of prunes: A functional food? Critical Rev. Food Sci. Nutrit. 41:251–286.

    Article  CAS  Google Scholar 

  • Starnes, H.N. 1905. Japan and hybrid plums. State Coll. Agric. Mech. Arts, Georgia Exp. Sta. Bull. 68.

    Google Scholar 

  • Struss, D., Ahmad, R., Southwick, S.M. 2003. Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. J. Amer. Soc. Hort. Sci., 128:421–428.

    Google Scholar 

  • Sutherland, B.G., Robbins, T.P., Tobutt, K.R. 2004a. Primers amplifying a range of Prunus S-alleles. Plant Breeding, 123:582–584.

    Article  CAS  Google Scholar 

  • Sutherland, B.G., Robbins, T.P., Tobutt, K.R., 2004b. Molecular genetics of self-incompatibility in plums. Acta Hort. 663:557–562.

    CAS  Google Scholar 

  • Sutherland, B.G., Tobutt, K.R., and Robbins, T.P. 2007. Molecular genotyping of self-incompatible plum cultivars. Acta Hort. 734:47–51.

    CAS  Google Scholar 

  • Testolin, R., Messina, R., Lain, O., Marrazzo, M.T., Huang, W-G., Cipriani, G. 2004. Microsatellites isolated in almond from an AC-repeat enriched library. Mol. Ecol. Notes 4:459–461.

    Article  CAS  Google Scholar 

  • Theiler, R., 1971: Embryonenkultur für die Anzucht neuer Kirschenhybriden (Prunus avium L.). Schweiz. Landwirt. Forsch. 10:65–93.

    Google Scholar 

  • Tian, L.-N., Wen, Y., Jayasankar, S., Sibbald, S. 2007. Regeneration of Prunus salicina Lindl (Japanese plum) from hypocotyls of mature seeds. In Vitro Cellular Develop. Biol. 43:343–347.

    Google Scholar 

  • Tomas-Barberan, F.A., Gil, M.I., Cremin, P., Waterhouse, A.L., Hess-Pierce, B., and Kader, A.A. 2001. HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J. Agric. Food Chem. 49:4748–4760.

    Article  PubMed  CAS  Google Scholar 

  • Topp, B.L. and Russell, D.M. 1989. Breeding early ripening Japanese plums. Acta Hort. 240:27–30.

    Google Scholar 

  • Topp, B.L., and Russell, D.M. 1990a. ‘Queensland Bellerosa’ plum. HortScience 25:814.

    Google Scholar 

  • Topp, B.L., and Russell, D.M. 1990b. ‘Queensland Earlisweet’ cherry plum. HortScience 25:713.

    Google Scholar 

  • Topp, B.L., and Sherman, W.B. 1990a. Potential for low-chill Japanese plums in Florida. Proc. Fla. State Hort. Soc. 103:294–298.

    Google Scholar 

  • Topp, B.L., and Sherman, W.B. 1990b. Sources of bacterial spot resistance in Japanese-type plum cultivars. Fruit Var. J. 44:32–35.

    Google Scholar 

  • Topp, B.L., Heaton, J.B., Russell, D.M., and Mayer, R. 1989. Field susceptibility of Japanese-type plums to Xanthomonas campestris pv. pruni. Aust. J. Exp. Agric. 29:905–909.

    Article  Google Scholar 

  • Topp, B.L., Sherman, W.B., and Stall, R.E. 1991. Comparison of rating methods for bacterial spot resistance in Japanese-type plum. Fruit Var. J. 45:70–74.

    Google Scholar 

  • Urtubia, C., Devia, J., Castro, A., Zamora, P., Aguirre, C., Tapia, E., Barba, P., Dell’Orto, P., Moynihan, M., Petri, C., Scorza, R., Prieto, H. 2008. Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Reports. DOI 10.1007/s00299-008-0559-0.

    Google Scholar 

  • USDA. 2007. Fruit and Tree Nuts Situation and Outlook Yearbook. Market and Trade, Economics Division, Economic Research Service, U.S. Department of Agriculture, October 2007, FTS-2007.

    Google Scholar 

  • Vangdal, E., Sekse, L., and Slimestad, R. 2007. Phenolics and other compounds with antioxidative effect in stone fruit - Preliminary results. Acta Hort. 734:357–361.

    CAS  Google Scholar 

  • Vaughan S.P., Russell K. 2004. Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol. Ecol. Notes 4: 429–431.

    Article  CAS  Google Scholar 

  • Vieira, E.A., Nodari, R.O., Dantas, A.C.M., Ducroquet, J.P., Dalbó, M., Borges, C.V. 2005. Genetic mapping of the Japanese plum. Crop Breed. Appl. Biotech. 5:29–37.

    CAS  Google Scholar 

  • Vizzotto, M., Cisneros-Zevallos, L., Byrne, D.H., Ramming, D.W., and Okie, W.R. 2007. Large variation found in the phytochemical and antioxidant activity of peach and plum germplasm. J. Amer. Soc. Hort. Sci. 132:334–340.

    Google Scholar 

  • Wakana, A., Hanada, N., Torikai, Y., Fukudome, I., and Yasukochi, K. 2006. The extent of intersubgeneric cross compatibility between Japanese plum (Prunus salicina Lindl.) and peach (P. percica Batsch.). J. Fac. Agric. Kyushu Univ. 51:87–92 (English summary).

    Google Scholar 

  • Walsh, K., Long, R.L. and Middleton, S.G. 2007. Use of near infra-red spectroscopy in evaluation of source-sink manipulation to increase the soluble sugar content of stonefruit. J. Hort. Sci. Biotech. 82:316–322.

    CAS  Google Scholar 

  • Wang, A.M., Tian, L.N., Huang, T.S., Brown, D.C.W., Svircev, A.M., Stobbs, L.W., Kiki, B.L.A. and Sanfacon, H. 2009., 2009. The development of genetic resistance to Plum pox virus in transgenic Nicotiana Benthamiana and Prunus Domestica. Acta Hort. 839:665–672.

    CAS  Google Scholar 

  • Watkins, R. 1976. Cherry, plum, peach, apricot and almond. Prunus spp., pp. 242–247, In N. W. Simmonds, ed. Evolution of crop plants. Longman., London UK.

    Google Scholar 

  • Weinberger, J.H. 1975. Plums, p. 336–347, In J. Janick and J. N. Moore, eds. Advances in Fruit Breeding. Purdue University Press, West Lafayette, Indiana.

    Google Scholar 

  • Weinberger, J.H., and Thompson, L.A. 1962. Inheritance of certain fruit and leaf characters in Japanese plums. Proc. Amer. Soc. Hort. Sci. 81:172–179.

    Google Scholar 

  • Wen, I.C., and Liu, Y. 2004. Evaluation and genetic relationship analysis by RAPD on Oriental plum germplasm. Journal of Agricultural Research of China 53:97–110 (in Chinese).

    CAS  Google Scholar 

  • Wen, I.C., and Sherman, W.B. 2003. Developing low chill, high quality Japanese plums in subtropical Taiwan. Acta Hort. 622:437–441.

    Google Scholar 

  • Werner, D.J., Ritchie, D.F., Cain, D.W., and Zehr, E.I. 1986. Susceptibility of peaches and nectarines, plant introductions, and other Prunus species to bacterial spot. HortScience 21:127–130.

    Google Scholar 

  • Werner, D.J., Mowrey, B.D., and Young, E. 1988. Chilling requirement and post-rest heat accumulation as related to difference in time of bloom between peach and western sand cherry. J. Amer. Soc. Hort. Sci. 113:775–778.

    Google Scholar 

  • Wight, W.F. 1915a. Native American species of Prunus. U.S. Dept. Agric. Bull. 179.

    Google Scholar 

  • Wight, W.F. 1915b. The varieties of plums derived from native American species. U.S. Dept. Agric. Bull. 172.

    Book  Google Scholar 

  • Yamaguchi, M. and Kyotani, H. 1985. Differences in fruit ripening patterns of Japanese plum cultivars under high (30oC) and medium (20oC) temperature storage. Bull. Fruit Tree Res. Stn. A 13:1–19. (English summary).

    Google Scholar 

  • Yamaguchi, M., Yoshida, M., Kyotani, H., Nakamura, Y., Nishimura, K., Haji, T., and Miyake, M. 1998. New Japanese plum cultivar ‘Honey Rosa’. Bull. Nat. Inst. Fruit Tree Sci. 30–31:1–14.

    Google Scholar 

  • Yamaguchi, M., Yoshida, M., Kyotani, H., Nakamura, Y., Nishimura, K., Haji, T., and Miyake, M. 1999. New Japanese plum cultivar ‘Honey Heart’. Bull. Nat. Inst. Fruit Tree Sci. 32:15–29.

    Google Scholar 

  • Yamane, H., Tao, R., Sugiura, A. 1999. Identification and cDNA cloning of S-RNases in self-incompatible Japanese plum (Prunus salicina Lindl. Cv. Sordum). Plant Biotech. 16:389–396.

    Article  CAS  Google Scholar 

  • Yamamoto, T., Mochida, K., Imai, T., Shi, Y.Z., Ogiwara, I., Hayashi, T. 2002. Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol. Ecol. Notes 2:298–301.

    CAS  Google Scholar 

  • Yancheva, S.D., Druart, P., Watilon, B. 2002. Agrobacterium-mediated transformation of plum (Prunus domestica L). Acta Hort. 577:215–217.

    Google Scholar 

  • Yezhov, V.N., Smykov, A.V., Smykov, V.K., Khokhlov, S.Y., Zaurov, D.E., Mehlenbacher, S.A., Molnar, T.J., Goffreda, J.C., and Funk, C.R. 2005. Genetic resources of temperate and subtropical fruit and nut species at the Nikita Botanical Gardens. HortScience 40:5–9.

    Google Scholar 

  • Yoshida, M. 1987. The origin of fruits, 2: Plums. Fruit Japan 42:49–53.

    Google Scholar 

  • Zhang, J., Lu, Z., and Guan, S. 1997. The plum germplasm resources in the cold area of Northeast China. China Fruits 4:44–45.

    CAS  Google Scholar 

  • Zhivondov, A. 2007. Biometric studies of plum-apricot hybrids (Prunus domestica x Armeniaca vulgaris). Vocarstvo 41:9–12.

    Google Scholar 

  • Zhivondov, A., and Djouvinov, V. 2002. Some results of the plum breeding programme at the Fruit-Growing Research Institute in Plovdiv. Acta Hort. 577:45–49.

    Google Scholar 

  • Zohary, D. 1992. Is the European plum, Prunus domestica L., a P. cerasifera EHRH. × P. spinosa L. allo-polyploid? Euphytica 60:75–77.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of Tom Beckman, Kenji Beppu, Unaroj Boonprakob, Glen Bradford, Peter Buchanan, David Byrne, Jose Chaparro, Ivan Day, Kesi Kesavan, Richard Haas, Nik Hulse, Alessandro Liverani, Jean Clement Marcaillou, Debby Maxfield, Chris Menzel, Valter Nencetti, Antonino Nicotra, Dick Okie, David Ramming, Maria do Carmo Bassols Raseira, Wayne Sherman, Chris Smith, Jorge Soria, Ien-chie Wen and Masami Yamaguchi. DEEDI employed BL Topp during part of this chapter preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce L. Topp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Topp, B.L., Russell, D.M., Neumüller, M., Dalbó, M.A., Liu, W. (2012). Plum. In: Badenes, M., Byrne, D. (eds) Fruit Breeding. Handbook of Plant Breeding, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0763-9_15

Download citation

Publish with us

Policies and ethics