Skip to main content

Signal Transduction Pathways as Therapeutic Targets in Cancer Therapy

  • Chapter
  • First Online:
Macromolecular Anticancer Therapeutics

Abstract

Cancer is increasingly recognized as “miscommunication” disease, in which inter- and intracellular signals are aberrantly sent and/or received, resulting in the uncontrolled proliferation, survival, and invasiveness of the cancer cell. Indeed, many of the genetic and epigenetic aberrations, which underlie the process of neoplastic transformation and progression, ultimately impinge on the inappropriate activation/inactivation of intracellular signaling pathways. Such signaling cascades usually proceed from the cell surface, where growth factors interact with their specific receptors, to cytoplasmic signaling intermediates, where different signals are integrated and both positive and negative feedback circuitry are in place to ensure signal fidelity and transduction accuracy, to nuclear transcription factors/complexes, which ultimately lead to the transcription/translation of effector genes and proteins involved in specific cellular functions. While the signal may be inappropriately transduced at several, and usually multiple, levels, one interesting feature of aberrant cancer signaling is that cancer cells may become “addicted” to specific signals and hence exquisitely sensitive to their modulation. In this chapter we will describe the signaling process, highlighting the steps at which aberrant signal transduction may turn a normal cell into a cancer cell and the crucial points where aberrant signals can be modulated for therapeutic purposes. Finally, we will briefly touch upon relevant issues surrounding the clinical development of signal transduction inhibitors as anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALL:

acute lymphocytic leukemia

AML:

acute myeloid leukemia

AMPK:

AMP-activated protein kinase

ASK1:

apoptosis signal kinase 1

ATP:

adenosine triphosphate

BSC:

best supportive care

Cdk:

cyclin-dependent kinase(s)

CFC:

cardio-facio-cutaneous syndrome

CML:

chronic myelogenous leukemia

4EBP1:

eukaryotic translation initiation factor 4E binding protein 1

EGFR:

epidermal growth factor receptor

ERK:

extracellular-signal-regulated kinase

FISH:

fluorescence in situ hybridization

FLT3:

Fms-like tyrosine kinase 3

GIST:

gastrointestinal stromal tumor(s)

GSK3:

glycogen synthase kinase 3

Hsp:

heat-shock protein

IRS:

Insulin receptor substrate

JNK:

Jun N-terminal kinase

LAM:

Lymphangioleiomyomatosis

MAPK:

mitogen-activated protein kinase

MEK:

MAPK and ERK kinase

MITF:

microphthalmia transcription factor

MST-2:

mammalian sterile 20-like kinase

mTOR(C):

mammalian target of rapamycin (complex)

NF1:

neurofibromatosis 1

NSCLC:

non-small cell lung cancer

PDGF:

platelet-derived growth factor

PDK1:

3-phosphoinositide-dependent protein kinase 1

PH:

pleckstrin homology domain

PI3K:

phosphoinositide 3-kinase

PI3K:

AKT (phosphatidylinositol-3 kinase–AKT)

PTEN:

phosphatase and tensin homolog deleted on chromosome 10

Raptor:

regulatory-associated protein of mTOR

Ras–Raf–MEK:

(mitogen-activated and extracellular-signal-regulated kinase kinase)

Rheb:

Ras homolog enriched in brain

Rictor:

rapamycin-insensitive companion of mTOR

RNAi:

RNA interference

ROS:

reactive oxygen species

RTK:

receptor tyrosine kinase(s)

S6K1:

ribosomal S6 kinase 1

SCLC:

small cell lung cancer

STAT:

signal transducer and activator of transcription

t-AML:

therapy-induced AML

TGFa:

transforming growth factor a

TK:

protein tyrosine kinase(s)

TKI:

tyrosine kinase inhibitor(s)

TNF:

tumor necrosis factor

TSC:

tuberous sclerosis complex

References

  1. Bishop JM (1991) Molecular themes in oncogenesis. Cell 64:235–248

    Article  CAS  PubMed  Google Scholar 

  2. Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. N Engl J Med 347:1593–1603

    Article  CAS  PubMed  Google Scholar 

  3. Hahn WC, Weinberg RA (2002) Modelling the molecular circuitry of cancer. Nat Rev Cancer 2:331–341

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  5. Rowley JD (2008) Chromosomal translocations: revisited yet again. Blood 112:2183–2189

    Article  CAS  PubMed  Google Scholar 

  6. Cahill DP, Kinzler KW, Vogelstein B, et al. (1999) Genetic instability and darwinian selection in tumours. Trends Cell Biol 9:M57–M60

    Article  CAS  PubMed  Google Scholar 

  7. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  CAS  PubMed  Google Scholar 

  8. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    CAS  PubMed  Google Scholar 

  9. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    Article  CAS  PubMed  Google Scholar 

  10. Gronbaek K, Hother C, Jones PA (2007) Epigenetic changes in cancer. APMIS 115:1039–1059

    Article  PubMed  Google Scholar 

  11. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  CAS  PubMed  Google Scholar 

  12. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167

    Article  CAS  PubMed  Google Scholar 

  13. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  14. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  CAS  PubMed  Google Scholar 

  15. Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic “language” of covalent histone modifications to cancer. Br J Cancer 90:761–769

    Article  CAS  PubMed  Google Scholar 

  16. Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    Article  CAS  PubMed  Google Scholar 

  17. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  18. Ting AH, McGarvey KM, Baylin SB (2006) The cancer epigenome – components and functional correlates. Genes Dev 20:3215–3231

    Article  CAS  PubMed  Google Scholar 

  19. Allen A (2007) Epigenetic alterations and cancer: new targets for therapy. IDrugs 10:709–712

    CAS  PubMed  Google Scholar 

  20. Gal-Yam EN, Saito Y, Egger G, et al. (2008) Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med 59:267–280

    Article  CAS  PubMed  Google Scholar 

  21. Smith LT, Otterson GA, Plass C (2007) Unraveling the epigenetic code of cancer for therapy. Trends Genet 23:449–456

    Article  CAS  PubMed  Google Scholar 

  22. Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5:37–50

    Article  CAS  PubMed  Google Scholar 

  23. Bianco R, Melisi D, Ciardiello F, et al. (2006) Key cancer cell signal transduction pathways as therapeutic targets. Eur J Cancer 42:290–294

    Article  CAS  PubMed  Google Scholar 

  24. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  CAS  PubMed  Google Scholar 

  25. Parsons JT, Parsons SJ (1993) Protein-tyrosine kinases, oncogenes, and cancer. Important Adv Oncol 3–17

    Google Scholar 

  26. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353:172–187

    Article  CAS  PubMed  Google Scholar 

  27. Van Etten RA (2007) Oncogenic signaling: new insights and controversies from chronic myeloid leukemia. J Exp Med 204:461–465

    Article  CAS  PubMed  Google Scholar 

  28. Sherbenou DW, Druker BJ (2007) Applying the discovery of the Philadelphia chromosome. J Clin Invest 117:2067–2074

    Article  CAS  PubMed  Google Scholar 

  29. Jones S, Zhang X, Parsons DW, et al. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed  Google Scholar 

  30. Goutsias J, Lee NH (2007) Computational and experimental approaches for modeling gene regulatory networks. Curr Pharm Des 13:1415–1436

    Article  CAS  PubMed  Google Scholar 

  31. Hornberg JJ, Bruggeman FJ, Westerhoff HV, et al. (2006) Cancer: a systems biology disease. Biosystems 83:81–90

    Article  CAS  PubMed  Google Scholar 

  32. Stransky B, Barrera J, Ohno-Machado L, et al. (2007) Modeling cancer: integration of “omics” information in dynamic systems. J Bioinform Comput Biol 5:977–986

    Article  CAS  PubMed  Google Scholar 

  33. Wang E, Lenferink A, O’Connor-McCourt M (2007) Cancer systems biology: exploring cancer-associated genes on cellular networks. Cell Mol Life Sci 64:1752–1762

    Article  CAS  PubMed  Google Scholar 

  34. Becker J (2004) Signal transduction inhibitors – a work in progress. Nat Biotechnol 22:15–18

    Article  CAS  PubMed  Google Scholar 

  35. Griffith J, Black J, Faerman C, et al. (2004) The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 13:169–178

    Article  CAS  PubMed  Google Scholar 

  36. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  CAS  PubMed  Google Scholar 

  37. Van Etten RA (2003) c-Abl regulation: a tail of two lipids. Curr Biol 13:R608–R610

    Article  CAS  PubMed  Google Scholar 

  38. Nakao M, Yokota S, Iwai T, et al. (1996) Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10:1911–1918

    CAS  PubMed  Google Scholar 

  39. Sharma SV, Bell DW, Settleman J, et al. (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169–181

    Article  CAS  PubMed  Google Scholar 

  40. Smith KM, Yacobi R, Van Etten RA (2003) Autoinhibition of Bcr-Abl through its SH3 domain. Mol Cell 12:27–37

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe D, Ezoe S, Fujimoto M, et al. (2004) Suppressor of cytokine signalling-1 gene silencing in acute myeloid leukaemia and human haematopoietic cell lines. Br J Haematol 126:726–735

    Article  CAS  PubMed  Google Scholar 

  42. Baselga J (2006) Targeting tyrosine kinases in cancer: the second wave. Science 312:1175–1178

    Article  CAS  PubMed  Google Scholar 

  43. Traxler P (2003) Tyrosine kinases as targets in cancer therapy – successes and failures. Expert Opin Ther Targets 7:215–234

    Article  CAS  PubMed  Google Scholar 

  44. Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37 Suppl 4:S3–S8

    Article  CAS  PubMed  Google Scholar 

  45. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354

    Article  CAS  PubMed  Google Scholar 

  46. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37 Suppl 4:S9–15

    Article  CAS  PubMed  Google Scholar 

  47. Hirsch FR, Varella-Garcia M, Bunn PA, Jr., et al. (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21:3798–3807

    Article  CAS  PubMed  Google Scholar 

  48. Mendelsohn J (1992) Epidermal growth factor receptor as a target for therapy with antireceptor monoclonal antibodies. J Natl Cancer Inst Monogr 125–131

    Google Scholar 

  49. Rossi A, Bria E, Maione P, et al. (2008) The role of cetuximab and other epidermal growth factor receptor monoclonal antibodies in the treatment of advanced non-small cell lung cancer. Rev Recent Clin Trials 3:217–227

    Article  CAS  PubMed  Google Scholar 

  50. Comis RL (2005) The current situation: erlotinib (Tarceva) and gefitinib (Iressa) in non-small cell lung cancer. Oncologist 10:467–470

    Article  CAS  PubMed  Google Scholar 

  51. Siegel-Lakhai WS, Beijnen JH, Schellens JH (2005) Current knowledge and future directions of the selective epidermal growth factor receptor inhibitors erlotinib (Tarceva) and gefitinib (Iressa). Oncologist 10:579–589

    Article  CAS  PubMed  Google Scholar 

  52. Lynch TJ, Bell DW, Sordella R, et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  53. Paez JG, Janne PA, Lee JC, et al. (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  CAS  PubMed  Google Scholar 

  54. Pao W, Miller V, Zakowski M, et al. (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101:13306–13311

    Article  CAS  PubMed  Google Scholar 

  55. Rosell R, Taron M, Sanchez JJ, et al. (2007) Setting the benchmark for tailoring treatment with EGFR tyrosine kinase inhibitors. Future Oncol 3:277–283

    Article  CAS  PubMed  Google Scholar 

  56. Sequist LV, Joshi VA, Janne PA, et al. (2007) Response to treatment and survival of patients with non-small cell lung cancer undergoing somatic EGFR mutation testing. Oncologist 12:90–98

    Article  CAS  PubMed  Google Scholar 

  57. Kobayashi S, Boggon TJ, Dayaram T, et al. (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    Article  CAS  PubMed  Google Scholar 

  58. Pao W, Miller VA, Politi KA, et al. (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    Article  PubMed  CAS  Google Scholar 

  59. Balak MN, Gong Y, Riely GJ, et al. (2006) Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12:6494–6501

    Article  CAS  PubMed  Google Scholar 

  60. Tokumo M, Toyooka S, Ichihara S, et al. (2006) Double mutation and gene copy number of EGFR in gefitinib refractory non-small-cell lung cancer. Lung Cancer 53:117–121

    Article  PubMed  Google Scholar 

  61. Greulich H, Chen TH, Feng W, et al. (2005) Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2:e313

    Article  PubMed  CAS  Google Scholar 

  62. Ji H, Li D, Chen L, et al. (2006) The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9:485–495

    Article  CAS  PubMed  Google Scholar 

  63. Jiang J, Greulich H, Janne PA, et al. (2005) Epidermal growth factor-independent transformation of Ba/F3 cells with cancer-derived epidermal growth factor receptor mutants induces gefitinib-sensitive cell cycle progression. Cancer Res 65:8968–8974

    Article  CAS  PubMed  Google Scholar 

  64. Politi K, Zakowski MF, Fan PD, et al. (2006) Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 20:1496–1510

    Article  CAS  PubMed  Google Scholar 

  65. Sordella R, Bell DW, Haber DA, et al. (2004) Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305:1163–1167

    Article  CAS  PubMed  Google Scholar 

  66. Fabian MA, Biggs WH, III, Treiber DK, et al. (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23:329–336

    Article  CAS  PubMed  Google Scholar 

  67. Barber TD, Vogelstein B, Kinzler KW, et al. (2004) Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med 351:2883

    Article  CAS  PubMed  Google Scholar 

  68. Gwak GY, Yoon JH, Shin CM, et al. (2005) Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. J Cancer Res Clin Oncol 131:649–652

    Article  CAS  PubMed  Google Scholar 

  69. Kwak EL, Jankowski J, Thayer SP, et al. (2006) Epidermal growth factor receptor kinase domain mutations in esophageal and pancreatic adenocarcinomas. Clin Cancer Res 12:4283–4287

    Article  CAS  PubMed  Google Scholar 

  70. Lee JW, Soung YH, Kim SY, et al. (2005) Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin Cancer Res 11:2879–2882

    Article  CAS  PubMed  Google Scholar 

  71. Schilder RJ, Sill MW, Chen X, et al. (2005) Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res 11:5539–5548

    Article  CAS  PubMed  Google Scholar 

  72. Bianco R, Shin I, Ritter CA, et al. (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22:2812–2822

    Article  CAS  PubMed  Google Scholar 

  73. Engelman JA, Janne PA, Mermel C, et al. (2005) ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci USA 102:3788–3793

    Article  CAS  PubMed  Google Scholar 

  74. Avruch J (2007) MAP kinase pathways: the first twenty years. Biochim Biophys Acta 1773:1150–1160

    Article  CAS  PubMed  Google Scholar 

  75. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  76. Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP kinase cascades. Adv Cancer Res 74:49–139

    Article  CAS  PubMed  Google Scholar 

  77. Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226

    Article  CAS  PubMed  Google Scholar 

  78. English JM, Cobb MH (2002) Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 23:40–45

    Article  CAS  PubMed  Google Scholar 

  79. Kohno M, Pouyssegur J (2006) Targeting the ERK signaling pathway in cancer therapy. Ann Med 38:200–211

    Article  CAS  PubMed  Google Scholar 

  80. McCubrey JA, Steelman LS, Abrams SL, et al. (2006) Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 46:249–279

    Article  CAS  PubMed  Google Scholar 

  81. McCubrey JA, Steelman LS, Chappell WH, et al. (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284

    Article  CAS  PubMed  Google Scholar 

  82. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947

    Article  CAS  PubMed  Google Scholar 

  83. Wang D, Boerner SA, Winkler JD, et al. (2007) Clinical experience of MEK inhibitors in cancer therapy. Biochim Biophys Acta 1773:1248–1255

    Article  CAS  PubMed  Google Scholar 

  84. Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71:479–500

    Article  CAS  PubMed  Google Scholar 

  85. Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218

    Article  CAS  PubMed  Google Scholar 

  86. Widmann C, Gibson S, Jarpe MB, et al. (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    CAS  PubMed  Google Scholar 

  87. Dhanasekaran N, Premkumar RE (1998) Signaling by dual specificity kinases. Oncogene 17:1447–1455

    Article  CAS  PubMed  Google Scholar 

  88. Kondoh K, Nishida E (2007) Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta 1773:1227–1237

    Article  CAS  PubMed  Google Scholar 

  89. Enslen H, Davis RJ (2001) Regulation of MAP kinases by docking domains. Biol Cell 93:5–14

    Article  CAS  PubMed  Google Scholar 

  90. Sharrocks AD, Yang SH, Galanis A (2000) Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci 25:448–453

    Article  CAS  PubMed  Google Scholar 

  91. Volmat V, Pouyssegur J (2001) Spatiotemporal regulation of the p42/p44 MAPK pathway. Biol Cell 93:71–79

    Article  CAS  PubMed  Google Scholar 

  92. Katz M, Amit I, Yarden Y (2007) Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta 1773:1161–1176

    Article  CAS  PubMed  Google Scholar 

  93. Rajalingam K, Schreck R, Rapp UR, et al. (2007) Ras oncogenes and their downstream targets. Biochim Biophys Acta 1773:1177–1195

    Article  CAS  PubMed  Google Scholar 

  94. Galmiche A, Fueller J (2007) RAF kinases and mitochondria. Biochim Biophys Acta 1773:1256–1262

    Article  CAS  PubMed  Google Scholar 

  95. Kyriakis JM (2007) The integration of signaling by multiprotein complexes containing Raf kinases. Biochim Biophys Acta 1773:1238–1247

    Article  CAS  PubMed  Google Scholar 

  96. Leicht DT, Balan V, Kaplun A, et al. (2007) Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta 1773:1196–1212

    Article  CAS  PubMed  Google Scholar 

  97. Crews CM, Alessandrini A, Erikson RL (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478–480

    Article  CAS  PubMed  Google Scholar 

  98. Seger R, Seger D, Lozeman FJ, et al. (1992) Human T-cell mitogen-activated protein kinase kinases are related to yeast signal transduction kinases. J Biol Chem 267:25628–25631

    CAS  PubMed  Google Scholar 

  99. Boulton TG, Yancopoulos GD, Gregory JS, et al. (1990) An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249:64–67

    Article  CAS  PubMed  Google Scholar 

  100. Chambard JC, Lefloch R, Pouyssegur J, et al. (2007) ERK implication in cell cycle regulation. Biochim Biophys Acta 1773:1299–1310

    Article  CAS  PubMed  Google Scholar 

  101. Whitmarsh AJ (2007) Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim Biophys Acta 1773:1285–1298

    Article  CAS  PubMed  Google Scholar 

  102. Rodriguez-Viciana P, Tetsu O, Tidyman WE, et al. (2006) Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311:1287–1290

    Article  CAS  PubMed  Google Scholar 

  103. Estep AL, Palmer C, McCormick F, et al. (2007) Mutation analysis of BRAF, MEK1 and MEK2 in 15 ovarian cancer cell lines: implications for therapy. PLoS ONE 2:e1279

    Article  PubMed  CAS  Google Scholar 

  104. Marks JL, Gong Y, Chitale D, et al. (2008) Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res 68:5524–5528

    Article  CAS  PubMed  Google Scholar 

  105. Cowley S, Paterson H, Kemp P, et al. (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852

    Article  CAS  PubMed  Google Scholar 

  106. Mansour SJ, Matten WT, Hermann AS, et al. (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970

    Article  CAS  PubMed  Google Scholar 

  107. Robinson MJ, Stippec SA, Goldsmith E, et al. (1998) A constitutively active and nuclear form of the MAP kinase ERK2 is sufficient for neurite outgrowth and cell transformation. Curr Biol 8:1141–1150

    Article  CAS  PubMed  Google Scholar 

  108. McCubrey JA, Milella M, Tafuri A, et al. (2008) Targeting the Raf/MEK/ERK pathway with small-molecule inhibitors. Curr Opin Investig Drugs 9:614–630

    CAS  PubMed  Google Scholar 

  109. Milella M, Kornblau SM, Andreeff M (2003) The mitogen-activated protein kinase signaling module as a therapeutic target in hematologic malignancies. Rev Clin Exp Hematol 7:160–190

    CAS  PubMed  Google Scholar 

  110. Milella M, Precupanu CM, Gregorj C, et al. (2005) Beyond single pathway inhibition: MEK inhibitors as a platform for the development of pharmacological combinations with synergistic anti-leukemic effects. Curr Pharm Des 11:2779–2795

    Article  CAS  PubMed  Google Scholar 

  111. Tortora G, Bianco R, Daniele G, et al. (2007) Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies. Drug Resist Updat 10:81–100

    Article  CAS  PubMed  Google Scholar 

  112. Chang F, McCubrey JA (2001) P21(Cip1) induced by Raf is associated with increased Cdk4 activity in hematopoietic cells. Oncogene 20:4354–4364

    Article  CAS  PubMed  Google Scholar 

  113. Malumbres M, Perez dC I, Hernandez MI, et al. (2000) Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol Cell Biol 20:2915–2925

    Article  CAS  PubMed  Google Scholar 

  114. Woods D, Parry D, Cherwinski H, et al. (1997) Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17:5598–5611

    CAS  PubMed  Google Scholar 

  115. Kolch W (2001) To be or not to be: a question of B-Raf? Trends Neurosci 24:498–500

    Article  CAS  PubMed  Google Scholar 

  116. Murakami MS, Morrison DK (2001) Raf-1 without MEK? Sci STKE 2001:E30

    Article  Google Scholar 

  117. Zha J, Harada H, Yang E, et al. (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87:619–628

    Article  CAS  PubMed  Google Scholar 

  118. Harada H, Quearry B, Ruiz-Vela A, et al. (2004) Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci USA 101:15313–15317

    Article  CAS  PubMed  Google Scholar 

  119. Ley R, Balmanno K, Hadfield K, et al. (2003) Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 278:18811–18816

    Article  CAS  PubMed  Google Scholar 

  120. Weston CR, Balmanno K, Chalmers C, et al. (2003) Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene 22:1281–1293

    Article  CAS  PubMed  Google Scholar 

  121. Luciano F, Jacquel A, Colosetti P, et al. (2003) Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 22:6785–6793

    Article  CAS  PubMed  Google Scholar 

  122. Deng X, Ruvolo P, Carr B, et al. (2000) Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. Proc Natl Acad Sci USA 97:1578–1583

    Article  CAS  PubMed  Google Scholar 

  123. Deng X, Kornblau SM, Ruvolo PP, et al. (2001) Regulation of Bcl2 phosphorylation and potential significance for leukemic cell chemoresistance. J Natl Cancer Inst Monogr 30–37

    Google Scholar 

  124. Allan LA, Morrice N, Brady S, et al. (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5:647–654

    Article  CAS  PubMed  Google Scholar 

  125. Cardone MH, Roy N, Stennicke HR, et al. (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  CAS  PubMed  Google Scholar 

  126. O’neill E, Rushworth L, Baccarini M, et al. (2004) Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science 306:2267–2270

    Article  PubMed  CAS  Google Scholar 

  127. Du J, Cai SH, Shi Z, et al. (2004) Binding activity of H-Ras is necessary for in vivo inhibition of ASK1 activity. Cell Res 14:148–154

    Article  PubMed  Google Scholar 

  128. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  129. Garnett MJ, Marais R (2004) Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6:313–319

    Article  CAS  PubMed  Google Scholar 

  130. Davies H, Bignell GR, Cox C, et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  131. Yuen ST, Davies H, Chan TL, et al. (2002) Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res 62:6451–6455

    CAS  PubMed  Google Scholar 

  132. Wan PT, Garnett MJ, Roe SM, et al. (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  CAS  PubMed  Google Scholar 

  133. Zebisch A, Staber PB, Delavar A, et al. (2006) Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res 66:3401–3408

    Article  CAS  PubMed  Google Scholar 

  134. Solit DB, Garraway LA, Pratilas CA, et al. (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439:358–362

    Article  CAS  PubMed  Google Scholar 

  135. Garnett MJ, Rana S, Paterson H, et al. (2005) Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 20:963–969

    Article  CAS  PubMed  Google Scholar 

  136. Rapp UR, Gotz R, Albert S (2006) BuCy RAFs drive cells into MEK addiction. Cancer Cell 9:9–12

    Article  CAS  PubMed  Google Scholar 

  137. Gregorj C, Ricciardi MR, Petrucci MT, et al. (2007) ERK1/2 phosphorylation is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia. Blood 109:5473–5476

    Article  CAS  PubMed  Google Scholar 

  138. Kornblau SM, Womble M, Qiu YH, et al. (2006) Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 108:2358–2365

    Article  CAS  PubMed  Google Scholar 

  139. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  CAS  PubMed  Google Scholar 

  140. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  141. Katso R, Okkenhaug K, Ahmadi K, et al. (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675

    Article  CAS  PubMed  Google Scholar 

  142. Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27:5527–5541

    Article  CAS  PubMed  Google Scholar 

  143. Li J, Yen C, Liaw D, et al. (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  CAS  PubMed  Google Scholar 

  144. Steck PA, Pershouse MA, Jasser SA, et al. (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    Article  CAS  PubMed  Google Scholar 

  145. Stambolic V, Suzuki A, de la Pompa JL, et al. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39

    Article  CAS  PubMed  Google Scholar 

  146. Eng C (2003) PTEN: one gene, many syndromes. Hum Mutat 22:183–198

    Article  CAS  PubMed  Google Scholar 

  147. Walker SM, Leslie NR, Perera NM, et al. (2004) The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem J 379:301–307

    Article  CAS  PubMed  Google Scholar 

  148. Alessi DR, James SR, Downes CP, et al. (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269

    Article  CAS  PubMed  Google Scholar 

  149. Sarbassov DD, Guertin DA, Ali SM, et al. (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  150. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  Google Scholar 

  151. Fujita N, Sato S, Katayama K, et al. (2002) Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem 277:28706–28713

    Article  CAS  PubMed  Google Scholar 

  152. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  CAS  PubMed  Google Scholar 

  153. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  CAS  PubMed  Google Scholar 

  154. Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6:729–734

    Article  CAS  PubMed  Google Scholar 

  155. Gao X, Zhang Y, Arrazola P, et al. (2002) Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol 4:699–704

    Article  CAS  PubMed  Google Scholar 

  156. Tapon N, Ito N, Dickson BJ, et al. (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105:345–355

    Article  CAS  PubMed  Google Scholar 

  157. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  158. Ma L, Teruya-Feldstein J, Behrendt N, et al. (2005) Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes Dev 19:1779–1786

    Article  CAS  PubMed  Google Scholar 

  159. Manning BD, Logsdon MN, Lipovsky AI, et al. (2005) Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev 19:1773–1778

    Article  CAS  PubMed  Google Scholar 

  160. Hresko RC, Mueckler M (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280:40406–40416

    Article  CAS  PubMed  Google Scholar 

  161. Jacinto E, Loewith R, Schmidt A, et al. (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128

    Article  CAS  PubMed  Google Scholar 

  162. Sarbassov DD, Ali SM, Kim DH, et al. (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  CAS  PubMed  Google Scholar 

  163. Kim DH, Sarbassov DD, Ali SM, et al. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  CAS  PubMed  Google Scholar 

  164. Kim DH, Sabatini DM (2004) Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr Top Microbiol Immunol 279:259–270

    CAS  PubMed  Google Scholar 

  165. Sarbassov DD, Ali SM, Sengupta S, et al. (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168

    Article  CAS  PubMed  Google Scholar 

  166. Frias MA, Thoreen CC, Jaffe JD, et al. (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16:1865–1870

    Article  CAS  PubMed  Google Scholar 

  167. Zeng Z, Sarbassov dD, Samudio IJ, et al. (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109:3509–3512

    Article  CAS  PubMed  Google Scholar 

  168. Cantley LC, Auger KR, Carpenter C, et al. (1991) Oncogenes and signal transduction. Cell 64:281–302

    Article  CAS  PubMed  Google Scholar 

  169. Karakas B, Bachman KE, Park BH (2006) Mutation of the PIK3CA oncogene in human cancers. Br J Cancer 94:455–459

    Article  CAS  PubMed  Google Scholar 

  170. Samuels Y, Wang Z, Bardelli A, et al. (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    Article  CAS  PubMed  Google Scholar 

  171. Bachman KE, Argani P, Samuels Y, et al. (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3:772–775

    Article  CAS  PubMed  Google Scholar 

  172. Campbell IG, Russell SE, Choong DY, et al. (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64:7678–7681

    Article  CAS  PubMed  Google Scholar 

  173. Saal LH, Holm K, Maurer M, et al. (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65:2554–2559

    Article  CAS  PubMed  Google Scholar 

  174. Broderick DK, Di C, Parrett TJ, et al. (2004) Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res 64:5048–5050

    Article  CAS  PubMed  Google Scholar 

  175. Lee JW, Soung YH, Kim SY, et al. (2005) PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 24:1477–1480

    Article  CAS  PubMed  Google Scholar 

  176. Wu G, Mambo E, Guo Z, et al. (2005) Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab 90:4688–4693

    Article  CAS  PubMed  Google Scholar 

  177. Parsons DW, Wang TL, Samuels Y, et al. (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436:792

    Article  CAS  PubMed  Google Scholar 

  178. Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 102:802–807

    Article  CAS  PubMed  Google Scholar 

  179. Samuels Y, Diaz LA, Jr., Schmidt-Kittler O, et al. (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7:561–573

    Article  CAS  PubMed  Google Scholar 

  180. Ikenoue T, Kanai F, Hikiba Y, et al. (2005) Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 65:4562–4567

    Article  CAS  PubMed  Google Scholar 

  181. Wennstrom S, Downward J (1999) Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol 19:4279–4288

    CAS  PubMed  Google Scholar 

  182. Guan KL, Figueroa C, Brtva TR, et al. (2000) Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 275:27354–27359

    CAS  PubMed  Google Scholar 

  183. Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744

    Article  CAS  PubMed  Google Scholar 

  184. Karbowniczek M, Cash T, Cheung M, et al. (2004) Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J Biol Chem 279:29930–29937

    Article  CAS  PubMed  Google Scholar 

  185. Yee WM, Worley PF (1997) Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol Cell Biol 17:921–933

    CAS  PubMed  Google Scholar 

  186. Carracedo A, Ma L, Teruya-Feldstein J, et al. (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118:3065–3074

    CAS  PubMed  Google Scholar 

  187. Beck SE, Carethers JM (2007) BMP suppresses PTEN expression via RAS/ERK signaling. Cancer Biol Ther 6:1313–1317

    CAS  PubMed  Google Scholar 

  188. Vasudevan KM, Burikhanov R, Goswami A, et al. (2007) Suppression of PTEN expression is essential for antiapoptosis and cellular transformation by oncogenic Ras. Cancer Res 67:10343–10350

    Article  CAS  PubMed  Google Scholar 

  189. Roux PP, Ballif BA, Anjum R, et al. (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101:13489–13494

    Article  CAS  PubMed  Google Scholar 

  190. Ma L, Chen Z, Erdjument-Bromage H, et al. (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179–193

    Article  CAS  PubMed  Google Scholar 

  191. Carriere A, Cargnello M, Julien LA, et al. (2008) Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol 18:1269–1277

    Article  CAS  PubMed  Google Scholar 

  192. Meier F, Busch S, Lasithiotakis K, et al. (2007) Combined targeting of MAPK and AKT signalling pathways is a promising strategy for melanoma treatment. Br J Dermatol 156:1204–1213

    Article  CAS  PubMed  Google Scholar 

  193. Smalley KS, Haass NK, Brafford PA, et al. (2006) Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther 5:1136–1144

    Article  CAS  PubMed  Google Scholar 

  194. Grant S (2008) Cotargeting survival signaling pathways in cancer. J Clin Invest 118:3003–3006

    Article  CAS  PubMed  Google Scholar 

  195. Kinkade CW, Castillo-Martin M, Puzio-Kuter A, et al. (2008) Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118:3051–3064

    CAS  PubMed  Google Scholar 

  196. Weinstein IB, Joe AK (2006) Mechanisms of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3:448–457

    Article  CAS  PubMed  Google Scholar 

  197. Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68:3077–3080

    Article  CAS  PubMed  Google Scholar 

  198. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207

    Article  CAS  PubMed  Google Scholar 

  199. D’Cruz CM, Gunther EJ, Boxer RB, et al. (2001) c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7:235–239

    Article  PubMed  Google Scholar 

  200. Moody SE, Sarkisian CJ, Hahn KT, et al. (2002) Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2:451–461

    Article  CAS  PubMed  Google Scholar 

  201. Moody SE, Perez D, Pan TC, et al. (2005) The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8:197–209

    Article  CAS  PubMed  Google Scholar 

  202. Gunther EJ, Moody SE, Belka GK, et al. (2003) Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev 17:488–501

    Article  CAS  PubMed  Google Scholar 

  203. Kornmann M, Danenberg KD, Arber N, et al. (1999) Inhibition of cyclin D1 expression in human pancreatic cancer cells is associated with increased chemosensitivity and decreased expression of multiple chemoresistance genes. Cancer Res 59:3505–3511

    CAS  PubMed  Google Scholar 

  204. Bria E, Cuppone F, Milella M, et al. (2008) Trastuzumab cardiotoxicity: biological hypotheses and clinical open issues. Expert Opin Biol Ther 8:1963–1971

    Article  CAS  PubMed  Google Scholar 

  205. Bria E, Cuppone F, Fornier M, et al. (2008) Cardiotoxicity and incidence of brain metastases after adjuvant trastuzumab for early breast cancer: the dark side of the moon? A meta-analysis of the randomized trials. Breast Cancer Res Treat 109:231–239

    Article  CAS  PubMed  Google Scholar 

  206. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  CAS  PubMed  Google Scholar 

  207. Slamon DJ, Leyland-Jones B, Shak S, et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  208. McCubrey JA, Steelman LS, Abrams SL, et al. (2008) Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 22:708–722

    Article  CAS  PubMed  Google Scholar 

  209. Misaghian N, Ligresti G, Steelman LS, et al. (2008) Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia

    Google Scholar 

  210. Steelman LS, Abrams SL, Whelan J, et al. (2008) Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22:686–707

    Article  CAS  PubMed  Google Scholar 

  211. Demetri GD, von Mehren M, Blanke CD, et al. (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    Article  CAS  PubMed  Google Scholar 

  212. Hughes TP, Kaeda J, Branford S, et al. (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349:1423–1432

    Article  CAS  PubMed  Google Scholar 

  213. Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358:1160–1174

    Article  CAS  PubMed  Google Scholar 

  214. Gorre ME, Mohammed M, Ellwood K, et al. (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  CAS  PubMed  Google Scholar 

  215. La RP, Corbin AS, Stoffregen EP, et al. (2002) Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571). Cancer Res 62:7149–7153

    Google Scholar 

  216. Kwak EL, Sordella R, Bell DW, et al. (2005) Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA 102:7665–7670

    Article  CAS  PubMed  Google Scholar 

  217. Weinstein IB (2000) Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis 21:857–864

    Article  CAS  PubMed  Google Scholar 

  218. Weinstein IB (2002) Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science 297:63–64

    Article  CAS  PubMed  Google Scholar 

  219. Kaelin WG, Jr. (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5:689–698

    Article  CAS  PubMed  Google Scholar 

  220. Mills GB, Lu Y, Kohn EC (2001) Linking molecular therapeutics to molecular diagnostics: inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc Natl Acad Sci USA 98:10031–10033

    Article  CAS  PubMed  Google Scholar 

  221. Mellinghoff IK, Wang MY, Vivanco I, et al. (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    Article  CAS  PubMed  Google Scholar 

  222. Sharma SV, Gajowniczek P, Way IP, et al. (2006) A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 10:425–435

    Article  CAS  PubMed  Google Scholar 

  223. Mukohara T, Engelman JA, Hanna NH, et al. (2005) Differential effects of gefitinib and cetuximab on non-small-cell lung cancers bearing epidermal growth factor receptor mutations. J Natl Cancer Inst 97:1185–1194

    Article  CAS  PubMed  Google Scholar 

  224. Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322

    Article  CAS  PubMed  Google Scholar 

  225. Felsher DW (2008) Oncogene addiction versus oncogene amnesia: perhaps more than just a bad habit? Cancer Res 68:3081–3086

    Article  CAS  PubMed  Google Scholar 

  226. Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    Article  CAS  PubMed  Google Scholar 

  227. Wu CH, van Riggelen J, Yetil A, et al. (2007) Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA 104:13028–13033

    Article  CAS  PubMed  Google Scholar 

  228. Shepherd FA, Rodrigues PJ, Ciuleanu T, et al. (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132

    Article  CAS  PubMed  Google Scholar 

  229. Moore MJ, Goldstein D, Hamm J, et al. (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966

    Article  CAS  PubMed  Google Scholar 

  230. Thatcher N, Chang A, Parikh P, et al. (2005) Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366:1527–1537

    Article  CAS  PubMed  Google Scholar 

  231. Kelly K, Chansky K, Gaspar LE, et al. (2008) Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. J Clin Oncol 26:2450–2456

    Article  CAS  PubMed  Google Scholar 

  232. Simon R, Maitournam A (2004) Evaluating the efficiency of targeted designs for randomized clinical trials. Clin Cancer Res 10:6759–6763

    Article  CAS  PubMed  Google Scholar 

  233. Miller K, Wang M, Gralow J, et al. (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  CAS  PubMed  Google Scholar 

  234. Schneider BP, Wang M, Radovich M, et al. (2008) Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 26:4672–4678

    Article  CAS  PubMed  Google Scholar 

  235. Vickers AJ, Ballen V, Scher HI (2007) Setting the bar in phase II trials: the use of historical data for determining “go/no go” decision for definitive phase III testing. Clin Cancer Res 13:972–976

    Article  PubMed  Google Scholar 

  236. Ratain MJ, Karrison TG (2007) Testing the wrong hypothesis in phase II oncology trials: there is a better alternative. Clin Cancer Res 13:781–782

    Article  PubMed  Google Scholar 

  237. Chan JK, Ueda SM, Sugiyama VE, et al. (2008) Analysis of phase II studies on targeted agents and subsequent phase III trials: what are the predictors for success? J Clin Oncol 26:1511–1518

    Article  PubMed  Google Scholar 

  238. Karaman MW, Herrgard S, Treiber DK, et al. (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132

    Article  CAS  PubMed  Google Scholar 

  239. Di LA, Moretti E (2008) Anthracyclines: the first generation of cytotoxic targeted agents? A possible dream. J Clin Oncol 26:5011–5013

    Article  Google Scholar 

  240. Llovet JM, Ricci S, Mazzaferro V, et al. (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    Article  CAS  PubMed  Google Scholar 

  241. Motzer RJ, Hutson TE, Tomczak P, et al. (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  242. El-Maraghi RH, Eisenhauer EA (2008) Review of phase II trial designs used in studies of molecular targeted agents: outcomes and predictors of success in phase III. J Clin Oncol 26:1346–1354

    Article  PubMed  Google Scholar 

  243. Lagakos SW (2006) The challenge of subgroup analyses – reporting without distorting. N Engl J Med 354:1667–1669

    Article  CAS  PubMed  Google Scholar 

  244. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765

    Article  CAS  PubMed  Google Scholar 

  245. Amado RG, Wolf M, Peeters M, et al. (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    Article  CAS  PubMed  Google Scholar 

  246. Freidlin B, Simon R (2005) Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients. Clin Cancer Res 11:7872–7878

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Milella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Milella, M., Ciuffreda, L., Bria, E. (2010). Signal Transduction Pathways as Therapeutic Targets in Cancer Therapy. In: Reddy, L., Couvreur, P. (eds) Macromolecular Anticancer Therapeutics. Macromolecular Anticancer Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0507-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0507-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0506-2

  • Online ISBN: 978-1-4419-0507-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics