Skip to main content

Microbial Ecology and Nematode Control in Natural Ecosystems

  • Chapter
  • First Online:
Biological Control of Plant-Parasitic Nematodes:

Part of the book series: Progress in Biological Control ((PIBC,volume 11))

Abstract

Plant-parasitic nematodes have traditionally been studied in agricultural systems, where they can be pests of importance on a wide range of crops. Nevertheless, nematode ecology in natural ecosystems is receiving increasing interest because of the role of nematodes in soil food webs, nutrient cycling, influences on vegetation composition, and because of their indicator value. In natural ecosystems, plant-parasitic nematode populations can be controlled by bottom-up, horizontal and top-down mechanisms, with more than one mechanism acting upon a given population. Moreover, in natural ecosystems soil nematodes inhabit probably more heterogeneous environment than in agricultural soils. New breakthroughs are to be expected when new molecular-based methods can be used for nematode research in natural ecosystems. Thus far, nematode ecology has strongly relied on coupling conventional abundance and diversity measurements with conceptual population ecology. Biochemical and molecular methods are changing our understanding of naturally co-evolved multitrophic plant-nematode-antagonist interactions in nature, the inter-connections within the soil food web and the extent to which nematodes are involved in many, disparate, soil processes. We foresee that finer nematode interactions that lead to their management and control can only be fully understood through the joint effort of different research disciplines that investigate such interactions from the molecular to the ecosystem level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Gouzy J, Aury JM et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915

    PubMed  CAS  Google Scholar 

  • Ahren D, Tunlid A (2003) Evolution of parasitism in nematode-trapping fungi. J Nematol 35:194–197

    PubMed  CAS  Google Scholar 

  • Allison SD (2006) Brown ground: a soil carbon analogue for the green world hypothesis? Am Nat 167:619–627

    PubMed  Google Scholar 

  • Anderson RM, May RM (1981) The population dynamics of micro-parasites and their invertebrate hosts. Philos Trans R Soc B 291:451–524

    Google Scholar 

  • Avendano F, Pierce FJ, Melakeberhan H (2004) The relationship between soybean cyst nematode seasonal population dynamics and soil texture. Nematology 6:511–525

    Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Google Scholar 

  • Bardgett RD, Hobbs PJ, Frostegard A (1996) Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264

    Google Scholar 

  • Bardgett RD, Cook R, Yeates GW et al (1999a) The influence of nematodes on below-ground processes in grassland ecosystems. Plant Soil 212:23–33

    CAS  Google Scholar 

  • Bardgett RD, Denton CS, Cook R (1999b) Below-ground herbivory promotes soil nutrient transfer and root growth in grassland. Ecol Lett 2:357–360

    Google Scholar 

  • Bardgett RD, Lovell RD, Hobbs PJ et al (1999c) Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol Biochem 31:1021–1030

    CAS  Google Scholar 

  • Barron GL (1977) The nematode destroying fungi. Canadian Publications Ltd., Ontario

    Google Scholar 

  • Barron GL (2003) Predatory fungi, wood decay, and the carbon cycle. Biodivers 4:3–9

    Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    PubMed  CAS  Google Scholar 

  • Bell NL, Watson RN (2001) Population dynamics of Paratylenchus nanus in soil under pasture: 1. Aggregation and abiotic factors. Nematology 3:187–197

    Google Scholar 

  • Berg G, Opelt K, Zachow C et al (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250–261

    PubMed  CAS  Google Scholar 

  • Bever JD (1994) Feedback between plants and their soil communities in an old field community. Ecology 75:1965–1977

    Google Scholar 

  • Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473

    Google Scholar 

  • Bezemer TM, Fountain M, Barea J et al (2010) Divergent composition but similar function of soil food webs beneath individual plants: plant species and community effects. Ecology.91: 3027–3036

    PubMed  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR et al (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    PubMed  CAS  Google Scholar 

  • Blaxter M, Mann J, Chapman T et al (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc B 360:1935–1943

    CAS  Google Scholar 

  • Bongers T (1990) The maturity index – an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Google Scholar 

  • Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251

    Google Scholar 

  • Brinkman EP, Duyts H, Van der Putten WH (2005a) Competition between endoparasitic nematodes and effect on biomass of Ammophila arenaria (marram grass) as affected by timing of inoculation and plant age. Nematology 7:169–178

    Google Scholar 

  • Brinkman EP, Duyts H, Van der Putten WH (2005b) Consequences of variation in species diversity in a community of root-feeding herbivores for nematode dynamics and host plant biomass. Oikos 110:417–427

    Google Scholar 

  • Brinkman EP, Troelstra SR, van der Putten WH (2005c) Soil feedback effects to the foredune grass Ammophila arenaria by endoparasitic root-feeding nematodes and whole soil communities. Soil Biol Biochem 37:2077–2087

    CAS  Google Scholar 

  • Brinkman EP, Duyts H, van der Putten WH (2008) Interactions between root-feeding nematodes depend on plant species identity. Soil Biol Biochem 40:2186–2193

    CAS  Google Scholar 

  • Christian CE (2001) Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature 413:635–639

    PubMed  CAS  Google Scholar 

  • Costa SR (2006) Interactions between nematodes and their microbial enemies in a sand dune ecosystem. PhD thesis biological sciences, Lancaster University, Lancaster

    Google Scholar 

  • Costa SR, Kerry BR, Bardgett RD et al (2006) Exploitation of immunofluorescence for the quantification and characterization of small numbers of Pasteuria endospores. FEMS Microbiol Ecol 58:593–600

    PubMed  CAS  Google Scholar 

  • Costa SR, Freitas H, Mathesius U (2008) Interactions between nematodes and rhizobia: from proteomics to plant distribution. 5th international congress of nematology, Brisbane, 2008

    Google Scholar 

  • De Deyn GB, Raaijmakers CE, van Ruijven J et al (2004) Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 106:576–586

    Google Scholar 

  • de Gives PM, Davies KG, Clark SJ et al (1999) Predatory behaviour of trapping fungi against srf mutants of Caenorhabditis elegans and different plant and animal parasitic nematodes. Parasitology 119:95–104

    Google Scholar 

  • de la Pena E, Rodriguez-Echeverria S, van der Putten WH et al (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840

    PubMed  Google Scholar 

  • de la Pena E, Vandegehuchte M, Bonte D et al (2008) Analysis of the specificity of three root-feeders towards grasses in coastal dunes. Plant Soil 310:113–120

    Google Scholar 

  • De Mesel I, Derycke S, Moens T et al (2004) Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ Microbiol 6:733–744

    PubMed  Google Scholar 

  • De Ruiter PC, Neutel AM, Moore JC (1995) Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269:1257–1260

    PubMed  Google Scholar 

  • Deacon JW, Saxena G (1997) Orientated zoospore attachment and cyst germination in Catenaria anguillulae, a facultative endoparasite of nematodes. Mycol Res 101:513–522

    Google Scholar 

  • Denton CS, Bardgett RD, Cook R et al (1999) Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biol Biochem 31:155–165

    CAS  Google Scholar 

  • DeWalt SJ, Denslow JS, Ickes K (2004) Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology 85:471–483

    Google Scholar 

  • Dieterich C, Clifton SW, Schuster LN et al (2008) The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet 40:1193–1198

    PubMed  CAS  Google Scholar 

  • Donn S, Daniell TJ, Griffiths BS et al (2007) T-RFLP approaches to nematode assemblage analysis. J Nematol 39:81

    Google Scholar 

  • Dromph KM, Cook R, Ostle NJ et al (2006) Root parasite induced nitrogen transfer between plants is density dependent. Soil Biol Biochem 38:2495–2498

    CAS  Google Scholar 

  • Duponnois R, Fargette M, Fould S et al (2000) Diversity of the bacterial hyperparasite Pasteuria penetrans in relation to root-knot nematodes (Meloidogyne spp.) control on Acacia holosericea. Nematology 2:435–442

    Google Scholar 

  • Ebert D, Hamilton WD (1996) Sex against virulence: the coevolution of parasitic diseases. Trends Ecol Evol 11:A79–A82

    Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Google Scholar 

  • Ettema CH (1998) Soil nematode diversity: species coexistence and ecosystem function. J Nematol 30:159–169

    PubMed  CAS  Google Scholar 

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Google Scholar 

  • Ettema CH, Yeates GW (2003) Nested spatial biodiversity patterns of nematode genera in a New Zealand forest and pasture soil. Soil Biol Biochem 35:339–342

    CAS  Google Scholar 

  • Ettema CH, Coleman DC, Vellidis G et al (1998) Spatiotemporal distributions of bacterivorous nematodes and soil resources in a restored riparian wetland. Ecology 79:2721–2734

    Google Scholar 

  • Ettema CH, Rathbun SL, Coleman DC (2000) On spatiotemporal patchiness and the coexistence of five species of Chronogaster (Nematoda: Chronogasteridae) in a riparian wetland. Oecologia 125:444–452

    Google Scholar 

  • FAOSTAT (2009) Food and agriculture organization of the United Nations http://faostat.fao.org. Accessed 21 Oct 2009

  • Farrell FC, Jaffee BA, Strong DR (2006) The nematode-trapping fungus Arthrobotrys oligospora in soil of the Bodega marine reserve: distribution and dependence on nematode-parasitized moth larvae. Soil Biol Biochem 38:1422–1429

    CAS  Google Scholar 

  • Ferris H, Mullens TA, Foord KE (1990) Stability and characteristics of spatial description parameters for nematode populations. J Nematol 22:427–439

    PubMed  CAS  Google Scholar 

  • Floyd R, Abebe E, Papert A et al (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    PubMed  CAS  Google Scholar 

  • Foucher A, Bongers T, Noble LR et al (2004) Assessment of nematode biodiversity using DGGE of 18 S rDNA following extraction of nematodes from soil. Soil Biol Biochem 36:2027–2032

    CAS  Google Scholar 

  • Freckman DW, Mankau R (1986) Abundance, distribution, biomass and energetics of soil nematodes in a Northern Mojave Desert ecosystem. Pedobiologia 29:129–142

    Google Scholar 

  • Freckman DW, Mankau R, Ferris H (1975) Nematode community structure in desert soils – nematode recovery. J Nematol 7:343–346

    PubMed  CAS  Google Scholar 

  • Ghedin E, Wang SL, Spiro D et al (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756–1760

    PubMed  CAS  Google Scholar 

  • Gommers FJ (1981) Biochemical interactions between nematodes and plants and their relevance to control. Helmin Abstr 50:9–24

    Google Scholar 

  • Goralczyk K (1998) Nematodes in a coastal dune succession: indicators of soil properties? Appl Soil Ecol 9:465–469

    Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD et al (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    CAS  Google Scholar 

  • Gruntman M, Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. Proc Natl Acad Sci USA 101:3863–3867

    PubMed  CAS  Google Scholar 

  • Haase S, Ruess L, Neumann G et al (2007) Low-level herbivory by root-knot nematodes (Meloidogyne incognita) modifies root hair morphology and rhizodeposition in host plants (Hordeum vulgare). Plant Soil 301:151–164

    CAS  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425

    Google Scholar 

  • Hastings A, Powell T (1991) Chaos in a 3-species food-chain. Ecology 72:896–903

    Google Scholar 

  • Heemsbergen DA, Berg MP, Loreau M et al (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020

    PubMed  CAS  Google Scholar 

  • Hillocks RJ (2001) The implications for plant health of nematode-fungal interactions in the root zone. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant-pathogen associations. CAB International, Oxford, pp 269–283

    Google Scholar 

  • Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57:401–411

    PubMed  CAS  Google Scholar 

  • Holterman M, van der Wurff A, van den Elsen S et al (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol Biol Evol 23:1792–1800

    PubMed  CAS  Google Scholar 

  • Holterman M, Karssen G, van den Elsen S et al (2009) Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology 99:227–235

    PubMed  CAS  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa-Rosalia or why are there so many kinds of animals. Am Nat 93:145–159

    Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER et al (1985) Interactions of bacteria, fungi, and their nematode grazers – effects on nutrient cycling and plant-growth. Ecol Mongr 55:119–140

    Google Scholar 

  • Jaffee BA, Strong DR (2005) Strong bottom-up and weak top-down effects in soil: nematode-parasitized insects and nematode-trapping fungi. Soil Biol Biochem 37:1011–1021

    CAS  Google Scholar 

  • Jaffee BA, Muldoon AE, Tedford EC (1992) Trap production by nematophagous fungi growing from parasitized nematodes. Phytopathology 82:615–620

    Google Scholar 

  • Johnson SN, Gregory PJ (2006) Chemically-mediated host-plant location and selection by root-feeding insects. Physiol Entomol 31:1–13

    CAS  Google Scholar 

  • Jones FGW, Jones MG (1964) Pests of field crops. Edward Arnold Ltd., London, p 406 p

    Google Scholar 

  • Kawecki TJ (1998) Red queen meets Santa Rosalia: arms races and the evolution of host specialization in organisms with parasitic lifestyles. Am Nat 152:635–651

    PubMed  CAS  Google Scholar 

  • Kerry BR, Hominick WM (2002) Biological control. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 483–509

    Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    PubMed  CAS  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Google Scholar 

  • Korthals GW, Smilauer P, Van Dijk C et al (2001) Linking above- and below-ground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land. Funct Ecol 15:506–514

    Google Scholar 

  • Kowalchuk GA, Stephen JR, DeBoer W et al (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497

    PubMed  CAS  Google Scholar 

  • Kowalchuk GA, De Souza FA, Van Veen JA (2002) Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol 11:571–581

    PubMed  CAS  Google Scholar 

  • Laakso J, Setala H, Palojarvi A (2000) Influence of decomposer food web structure and nitrogen availability on plant growth. Plant Soil 225:153–165

    CAS  Google Scholar 

  • Lee DL (2002) Life cycles. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London

    Google Scholar 

  • Lee BS, Lee HB, Choi SW et al (2005) Effective screening of antagonist for the biological control of soilborne infectious disease (damping-off). J Microbiol Biotechnol 15:701–709

    CAS  Google Scholar 

  • Lewis T, Taylor LR (1967) Introduction to experimental ecology. Academic, London

    Google Scholar 

  • Liang W, Steinberger Y (2001) Temporal changes in nematode community structure in a desert ecosystem. J Arid Environ 48:267–280

    Google Scholar 

  • Luttbeg B, Rowe L, Mangel M (2003) Prey state and experimental design affect relative size of trait – and density-mediated indirect effects. Ecology 84:1140–1150

    Google Scholar 

  • Mathesius U (2003) Conservation and divergence of signalling pathways between roots and soil microbes – the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. Plant Soil 255:105–119

    CAS  Google Scholar 

  • Mauchline TH, Kerry BR, Hirsch PR (2004) The biocontrol fungus Pochonia chlamydosporia shows nematode host preference at the infraspecific level. Mycol Res 108:161–169

    PubMed  Google Scholar 

  • McSorley R, Duncan LW (2004) Population dynamics. Nematology: advances and perspectives, vol 1, Nematode morphology, physiology and ecology. CABI Publishing, Wallingford, pp 469–492

    Google Scholar 

  • McSorley R, Frederick JJ (2004) Effect of extraction method on perceived composition of the soil nematode community. Appl Soil Ecol 27:55–63

    Google Scholar 

  • Mitra RM, Shaw SL, Long SR (2004) Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. Proc Natl Acad Sci USA 101:10217–10222

    PubMed  CAS  Google Scholar 

  • Mitreva M, Blaxter ML, Bird DM et al (2005) Comparative genomics of nematodes. Trends Genet 21:573–581

    PubMed  CAS  Google Scholar 

  • Moore JC, Hunt HW (1988) Resource compartmentation and the stability of real ecosystems. Nature 333:261–263

    Google Scholar 

  • Moore JC, Berlow EL, Coleman DC et al (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16 s ribosomal-RNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Neutel AM, Heesterbeek JAP, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123

    PubMed  CAS  Google Scholar 

  • O’Donnell AG, Colvan SR, Malosso E et al (2005) Twenty years of molecular analysis of bacterial communities and what have we learned about function? In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 44–56

    Google Scholar 

  • Opperman CH, Bird DM, Williamson VM et al (2008) Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci USA 105:14802–14807

    PubMed  CAS  Google Scholar 

  • Pen-Mouratov S, Steinberger Y (2005) Spatio-temporal dynamic heterogeneity of nematode abundance in a desert ecosystem. J Nematol 37:26–36

    PubMed  CAS  Google Scholar 

  • Piskiewicz AM, Duyts H, Berg MP et al (2007) Soil microorganisms control plant ectoparasitic nematodes in natural coastal foredunes. Oecologia 152:505–514

    PubMed  Google Scholar 

  • Piskiewicz AM, Duyts H, van der Putten WH (2008) Multiple species-specific controls of root-feeding nematodes in natural soils. Soil Biol Biochem 40:2729–2735

    CAS  Google Scholar 

  • Piskiewicz AM, de Milliano MJK, Duyts H et al (2009a) Plant ectoparasitic nematodes prefer roots without their microbial enemies. Plant Soil 316:277–284

    CAS  Google Scholar 

  • Piskiewicz AM, Duyts H, van der Putten WH (2009b) Soil microorganisms in coastal foredunes control the ectoparasitic root-feeding nematode Tylenchorhynchus ventralis by local interactions. Funct Ecol 23:621–626

    Google Scholar 

  • Powers T (2004) Nematode molecular diagnostics: from bands to barcodes. Annu Rev Phytopathol 42:367–383

    PubMed  CAS  Google Scholar 

  • Price PW, Bouton CE, Gross P et al (1980) Interactions among 3 trophic levels – influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Google Scholar 

  • Rantalainen ML, Haimi J, Setala H (2004) Testing the usefulness of habitat corridors in mitigating the negative effects of fragmentation: the soil faunal community as a model system. Appl Soil Ecol 25:267–274

    Google Scholar 

  • Rantalainen ML, Haimi J, Fritze H et al (2006) Effects of small-scale habitat fragmentation, habitat corridors and mainland dispersal on soil decomposer organisms. Appl Soil Ecol 34:152–159

    Google Scholar 

  • Rantalainen ML, Haimi J, Fritze H et al (2008) Soil decomposer community as a model system in studying the effects of habitat fragmentation and habitat corridors. Soil Biol Biochem 40:853–863

    CAS  Google Scholar 

  • Rasmann S, Turlings TCJ (2008) First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369

    Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    PubMed  CAS  Google Scholar 

  • Reitz M, Rudolph K, Schroder I et al (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Environ Microbiol 66:3515–3518

    PubMed  CAS  Google Scholar 

  • Rodriguez-Echeverria S, Crisostomo J, Freitas H (2004) Arbuscular mycorrhizal fungi associated with Ammophila arenaria L. in European coastal sand dunes. In: Arianotsou M, Papanastasis D (eds) Proceedings of the 10th international conference on mediterranean climate ecosystems, Rhodes, IOS Press, Amsterdam, The Netherlands 2004, pp 1–7

    Google Scholar 

  • Rodriguez-Kabana R (1991) Control biologico de nematodos parasitos de plantas. Nematropica 21:111–122

    Google Scholar 

  • Schnee C, Kollner TG, Held M et al (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    PubMed  CAS  Google Scholar 

  • Scholl EH, Thorne JL, McCarter JP et al (2003) Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach. Genome Biol 4:R19

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of plant parasitic nematodes by fungi: a review. Biores Technol 58:229–239

    CAS  Google Scholar 

  • Signor PW (1994) Biodiversity in geological time. Am Zool 34:23–32

    Google Scholar 

  • Stein LD, Bao Z, Blasiar D et al (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. Public Libr Sci Biol 1:E45

    Google Scholar 

  • Strauss SY (1991) Indirect effects in community ecology – their definition, study and importance. Trends Ecol Evol 6:206–210

    PubMed  CAS  Google Scholar 

  • Strong DR, Whipple AV, Child AL et al (1999) Model selection for a subterranean trophic cascade: root-feeding caterpillars and entomopathogenic nematodes. Ecology 80:2750–2761

    Google Scholar 

  • Stubbs WJ, Wilson JB (2004) Evidence for limiting similarity in a sand dune community. J Ecol 92:557–567

    Google Scholar 

  • Sturz AV, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262:241–249

    CAS  Google Scholar 

  • The CeSC (1998) Genome sequence of the nematode Caenorhabditis elegans. A platform for investigating biology. Science 282:2012–2018

    Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77

    PubMed  CAS  Google Scholar 

  • Uhlenbroek JH, Bijloo JD (1958) Investigations on nematicides. 1. Isolation and structure of a nematicidal principe occurring in Tagetes roots. Recl Trav Chim Pay B 77:1004–1009

    CAS  Google Scholar 

  • van Den Berg W, Rossing WAH (2005) Generalized linear dynamics of a plant-parasitic nematode population and the economic evaluation of crop rotations. J Nematol 37:55–65

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • van der Putten WH, Peters BAM (1997) How soil-borne pathogens may affect plant competition. Ecology 78:1785–1795

    Google Scholar 

  • van der Putten WH, Van Dijk C, Peters BAM (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–55

    Google Scholar 

  • van der Putten WH, Cook R, Costa S et al (2006) Nematode interactions in nature: models for sustainable control of nematode pests of crop plants? Adv Agron 89:227–260

    Google Scholar 

  • van der Stoel CD, Duyts H, Van der Putten WH (2006) Population dynamics of a host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass. Oikos 112:651–659

    Google Scholar 

  • van Elsas JD, Duarte GF, Keijzer-Wolters A et al (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Meth 43:133–151

    Google Scholar 

  • van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • van Valen L (1975) Reply to Foin et al. Nature 257: 515–516

    Google Scholar 

  • van Valen L (1976) The red queen. Am Nat 110:809–810

    Google Scholar 

  • van Veen FJF, Morris RJ, Godfray HCJ (2006) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu Rev Entomol 51:187–208

    PubMed  Google Scholar 

  • Viketoft M, Palmborg C, Sohlenius B et al (2005) Plant species effects on soil nematode communities in experimental grasslands. Appl Soil Ecol 30:90–103

    Google Scholar 

  • Villenave C, Cadet P (1998) Interactions of Helicotylenchus dihystera, Preatylenchus pseudopratensis, and Tylenchorhynchus gladiolatus on two plants from te soudano-sahelian zone of West Africa. Nematropica 28:31–39

    Google Scholar 

  • Waite IS, O’Donnell AG, Harrison A et al (2003) Design and evaluation of nematode 18 S rDNA primers for PCR and denaturing gradient gel electrophoresis (DGGE) of soil community DNA. Soil Biol Biochem 35:1165–1173

    CAS  Google Scholar 

  • Wardle DA, Yeates GW, Williamson W et al (2003) The response of three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos 102:45–56

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN et al (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    PubMed  CAS  Google Scholar 

  • Watt M, Silk WK, Passioura JB (2006) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann Bot 97:839–855

    PubMed  Google Scholar 

  • Whipps JM, Davies KG (2000) Success in biological control of plant pathogens and nematodes by microorganisms. In: Gurr G, Wratten S (eds) Biological control: measures of success. Kluwer, Dordrecht, pp 231–269

    Google Scholar 

  • White EM, Wilson JC, Clarke AR (2006) Biotic indirect effects: a neglected concept in invasion biology. Divers Distrib 12:443–455

    Google Scholar 

  • Wooton JT (1994) The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Syst 25:443–466

    Google Scholar 

  • Wu TH, Ayres E, Li G, Bardgett RD et al (2009) Molecular profiling of soil animal diversity in natural ecosystems: incongruence of molecular and morphological results. Soil Biol Biochem 41:849–857

    CAS  Google Scholar 

  • Wurst S, van Beersum S, Wagenaar R et al (2009) Plant defence against nematodes is not mediated by changes in the soil microbial community. Funct Ecol 23:488–495

    Google Scholar 

  • Yeates GW (1987) How plants affect nematodes. Adv Ecol Res 17:63–113

    Google Scholar 

  • Yeates GW, Bongers T, de Goede RGM et al (1993) Feeding habits in soil nematode families and genera – an outline for soil ecologists. J Nematol 25:315–331

    PubMed  CAS  Google Scholar 

  • Yorozuya H (2006) Effects of parasitoids on a mycophagous drosophilid community in northern Japan and an evaluation of the disproportionate parasitism hypothesis. Entomol Sci 9:13–22

    Google Scholar 

  • Young IM, Ritz K (2005) The habitat of soil microbes. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 31–43

    Google Scholar 

  • Zheng SJ, Dicke M (2008) Ecological genomics of plant-insect interactions: from gene to community. Plant Physiol 146:812–817

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia R. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Costa, S.R., van der Putten, W.H., Kerry, B.R. (2011). Microbial Ecology and Nematode Control in Natural Ecosystems. In: Davies, K., Spiegel, Y. (eds) Biological Control of Plant-Parasitic Nematodes:. Progress in Biological Control, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9648-8_2

Download citation

Publish with us

Policies and ethics