Skip to main content

Halfvortices in Flat Nanomagnets

  • Conference paper
  • 1434 Accesses

Part of the book series: NATO Science for Peace and Security Series ((NAPSB))

Abstract

We discuss a new type of topological defect in XY systems for which the O (2) symmetry is broken in the presence of a boundary. Of particular interest is the appearance of such defects in nanomagnets with a planar geometry. They are manifested as kinks of magnetization along the edge and can be viewed as halfvortices with winding numbers ±1/2. We argue that the halfvortices play a role in flat nanomagnetics equally important to that of ordinary bulk vortices. We show that domain walls found in experiments and numerical simulations in strips and rings are composite objects containing two or more elementary defects. We also discuss a closely related system: the two-dimensional smectic liquid crystal films with planar boundary condition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, (2000).

    Google Scholar 

  2. Mermin, N.D.: Rev. Mod. Phys. 51, 591 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  3. Zhu, J.-G., Zheng, Y., Prinz, G. A.: J. Appl. Phys. 87, 6668 (2000).

    Article  ADS  Google Scholar 

  4. Kl äui, M., Vaz, C.A.F., Lopez-Diaz, L., Bland, J.A.C.: J. Phys.: Condens. Matter 15, R985 (2003).

    Article  ADS  Google Scholar 

  5. Tchernyshyov, O., Chern, G.-W.: Phys. Rev. Lett. 95, 197204 (2005).

    Article  ADS  Google Scholar 

  6. Chern, G.-W., Youk, H., Tchernyshyov, O.: J. Appl. Phys. 99, 08Q505 (2006).

    Article  Google Scholar 

  7. Youk, H., Chern, G.-W., Merit, K., Oppenheimer, B., Tchernyshyov, O.: J. Appl. Phys. 99, 08B101 (2006).

    Article  Google Scholar 

  8. Mermin, N.D.: pp. 3-22 In: Quantum Fluids and Solids, eds. S.B. Trickey, E.D. Adams and J.W. Dufty, Plenum, New York (1977).

    Google Scholar 

  9. Misirpashaev, T.Sh.: Sov. Phys. JETP 72, 973 (1991).

    MathSciNet  Google Scholar 

  10. Volovik, G.E.: The Universe in a Helium Droplet, Clarendon Press, Oxford (2003).

    MATH  Google Scholar 

  11. Kleman, M., Lavrentovich, O.D.: Soft Matter Physics, Springer, New York (2003).

    Google Scholar 

  12. deGennes, P.G., Prost, J.: The Physics of Liquid Crystals, Clarendon Press, Oxford (1993).

    Google Scholar 

  13. Kurzke, M.: Calc. Var. PDE 26, 1 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  14. Kohn, R.V., Slastikov, V.V.: Proc. Roy. Soc. (London) Ser. A 461, 143 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. McMichael, R.D., Donahue, M.J.: IEEE Trans. Magn. 33, 4167 (1997).

    Article  ADS  Google Scholar 

  16. Zhu, F.Q., Chern, G.-W., Tchernyshyov, O., Zhu, X.C., Zhu, J.G., Chien, C.L.: Phys. Rev. Lett. 96, 027205 (2006).

    Article  ADS  Google Scholar 

  17. van den Berg, H.A.M.: J. Appl. Phys. 60, 1104 (1986).

    Article  ADS  Google Scholar 

  18. Londorf, M., Wadas, A., van den Berg, H.A.M., Wiesendanger, R.: Appl. Phys. Lett. 68, 3635 (1996).

    Article  ADS  Google Scholar 

  19. Hubert, A., Schaefer, R.: Magnetic Domains, Springer, Berlin (1998).

    Google Scholar 

  20. 20. Donahue, M.J., Porter, D.G.: OOMMF User’s Guide, Version 1.0, In: Interagency Report NISTIR 6376, NIST, Gaithersburg (1999). http://math.nist.gov/oommf/

  21. Langer, S.A., Sethna, J.P.: Phys. Rev. A 34, 5035 (1986).

    Article  ADS  Google Scholar 

  22. Fischer, T.M., Bruinsma, R.F., Knobler, C.M.: Phys. Rev. E 50, 413 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Chern, GW., Clarke, D., Youk, H., Tchernyshyov, O. (2008). Halfvortices in Flat Nanomagnets. In: Barbara, B., Imry, Y., Sawatzky, G., Stamp, P.C.E. (eds) Quantum Magnetism. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8512-3_3

Download citation

Publish with us

Policies and ethics