Skip to main content

Magnesium Chemical Rescue to Cobalt-Poisoned Cells from Rhodobacter sphaeroides

  • Conference paper
Photosynthesis. Energy from the Sun

Abstract

Rhodobacter sphaeroides is able to tolerate high cobaltous ion concentrations, notwithstanding the detrimental effects on growth parameters and bacteriochlorophyll content (Giotta et al. 2006). In order to study the influence of magnesium concentration on cobalt toxiCity, growth experiments were performed with variable magnesium and cobalt concentrations. At high cobalt concentration the increase of Mg2+ in the growth medium results in a significant increase in growth rate and population size reached at the stationary phase, contrasting cobalt toxic effect. Moreover cobalt-exposed bacteria showed a reduced Mg content with respect to control cells. These results demonstrate the existence of an interrelationship in the metabolism of magnesium and cobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson PH, Aldous E (1950) Ion antagonisms in microor-ganisms; interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc, and manganese. J Bacteriol 60:401-413.

    PubMed  CAS  Google Scholar 

  • Buccolieri A, Italiano F, Dell’Atti A, et al. (2006) Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool. Ann Chim 96:195-203.

    Article  PubMed  CAS  Google Scholar 

  • Giotta L, Agostiano A, Italiano F, et al. (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 62: 1490-1499.

    Article  PubMed  CAS  Google Scholar 

  • Jasper P, Silver S (1978) Divalent cation transport sys-tems of Rhodopseudomonas capsulata. J Bacteriol 133:1323-1328.

    PubMed  CAS  Google Scholar 

  • Jennette KW (1981) The role of metals in carcinogen-esis: Biochemistry and metabolism. Environ Health Perspect 40:233-252.

    Article  PubMed  CAS  Google Scholar 

  • Joho M, Tarumi K, Inouhe M, et al. (1991) Co2+ and Ni2+ resistance in Saccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+. Microbios 67:177-86.

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261:1-9.

    Article  PubMed  CAS  Google Scholar 

  • Leonard S, Gannett PM, Rojanasakul Y, et al. (1998) Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem 70:239-244.

    Article  PubMed  CAS  Google Scholar 

  • MacDiarmind CW, Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminium ion. J Biol Chem 273:1727-1732.

    Article  Google Scholar 

  • Smith RL, Maguire ME (1995) Distribution of the CorA Mg2+ transport system in Gram-negative bacteria. Bacteriol 177:1638-1640.

    CAS  Google Scholar 

  • Smith RL, Maguire ME (1998) Microbial magnesium trans-port: Unusual transporters searching for identity. Mol Microbiol 28:217-226.

    Article  PubMed  CAS  Google Scholar 

  • Venkateswerlu G, Sastry KS (1970) The mechanism of uptake of cobalt ions by Neurospora crassa. Biochem J 118:497-503.

    PubMed  CAS  Google Scholar 

  • Webb M (1970) The mechanism of acquired resistance to Co2+ and Ni2+ in Gram-positive and Gram-negative bacteria. Biochim Biophys Acta 222:440-446.

    Article  PubMed  CAS  Google Scholar 

  • Wu LF, Navarro C, de Pina K, et al. (1994) Antagonistic effect of nickel on the fermentative growth of Escherichia coli K-12 and comparison of nickel and cobalt toxicity on the aerobic and anaerobic growth.Environ Health Perspect 102 (Suppl 3):297-300.

    Article  PubMed  CAS  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, et al. (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875-1881.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John F. Allen Elisabeth Gantt John H. Golbeck Barry Osmond

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V.

About this paper

Cite this paper

Giotta, L., Italiano, F., Buccolieri, A., Agostiano, A., Milano, F., Trotta, M. (2008). Magnesium Chemical Rescue to Cobalt-Poisoned Cells from Rhodobacter sphaeroides . In: Allen, J.F., Gantt, E., Golbeck, J.H., Osmond, B. (eds) Photosynthesis. Energy from the Sun. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6709-9_313

Download citation

Publish with us

Policies and ethics