Skip to main content
Book cover

Myosins pp 353–373Cite as

Myosin VII

  • Chapter

Part of the book series: Proteins and Cell Regulation ((PROR,volume 7))

Abstract

Class VII myosins are among the most widely expressed myosins in the animal kingdom. They also have a broad tissue expression. Vertebrates and some invertebrates possess two different myosins VII, myosin VIIa and myosin VIIb, which may differ in their kinetic properties. Defects in myosin VIIa cause phenotypic anomalies in Drosophila, zebrafish, mouse and humans. In humans, loss-of-function mutations in the myosin VIIa gene cause Usher syndrome type I, a dual sensory defect that combines sensorineural deafness and retinitis pigmentosa leading to blindness. Some progress has been made in the characterization of the enzymatic properties of the myosin VII head domain, leading to the view that myosin VIIa may both exert tension at given subcellular emplacements, and move cargos (molecules or organelles) along actin filaments. The formation of myosin VII dimers in vivo, however, remains to be shown. Based on the analysis of mutant phenotypes and the deciphering of myosin VIIa-associated molecular networks, some of the roles played by myosin VIIa in the developing inner ear and the retina have been elucidated. In the inner ear sensory cells, myosin VIIa probably acts as a conveyer of several Usher syndrome proteins that are involved in the differentiation of the hair bundle, the structure receptive to sound or acceleration. In the retina, myosin VIIa transports melanosomes and phagosomes in pigment epithelium cells, and opsins in photoreceptor cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adato, A., Lefevre, G., Delprat, B., Michel, V., Michalski, N., Chardenoux, S., Weil, D., El-Amraoui, A. and Petit, C. (2005a). Usherin, the defective protein in Usher syndrome type IIA, is likely to be a component of interstereocilia ankle links in the inner ear sensory cells. Hum. Mol. Genet. 14, 3921–3932.

    Article  CAS  Google Scholar 

  • Adato, A., Michel, V., Kikkawa, Y., Reiners, Y., Alagramam, K. N., Weil, D., Yonekawa, H., Wolfrum, U., El-Amraoui, A. and Petit, C. (2005b). Interactions in the Usher syndrome type 1 proteins network. Hum. Mol. Genet. 14, 347–356.

    Article  CAS  Google Scholar 

  • Ahmed, Z. M., Goodyear, R., Riazuddin, S., Lagziel, A., Legan, P.K., Behra, M., Burgess, S. M., Lilley, K.S., Wilcox, E.R., Riazuddin, S., Griffith, A.J., Frolenkov, G.I., Belyantseva, I. A., Richardson, G. P., and Friedman, T. B. (2006). The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15.J. Neurosci. 26, 7022–7034.

    Article  PubMed  CAS  Google Scholar 

  • Ali, M. Y., Krementsova, E. B., Kennedy, G. G., Mahaffy, R., Pollard, T. D., Trybus, K. M. and Warshaw, D. M. (2007). Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci USA 104, 4332–4336.

    Article  PubMed  CAS  Google Scholar 

  • Baker, J. P. and Titus, M. A. (1997). A family of unconventional myosins from the nematode Caenorhabditis elegans. J. Mol. Biol. 272, 523–535.

    Article  PubMed  CAS  Google Scholar 

  • Berg, J. S., Powell, B. C. and Cheney, R. E. (2001). A millennial myosin census. Mol. Biol. Cell 12, 780–794.

    PubMed  CAS  Google Scholar 

  • Biehlmaier, O., Hodel, C. and Neuhauss, S.C.F. (2005). The visual mutant zebrafish mariner: a model system for human Usher syndrome 1B. ARVO Meeting Abstract 46, 1673.

    Google Scholar 

  • Boéda, B., El-Amraoui, A., Bahloul, A., Goodyear, R., Daviet, L., Blanchard, S., Perfettini, I., Fath, K. R., Shorte, S., Reiners, J. et al. (2002). Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J. 21, 6689–6699.

    Article  PubMed  Google Scholar 

  • Burnside, B. and Laties, A. M. (1979). Pigment movement and cellular contractility in the retinal pigment epithelium. In: Zinn KM, Marmor MF (eds) The Retinal Pigment Epithelium. Harvard University Press, Cambridge, pp 175–191.

    Google Scholar 

  • Chen, Z. Y., Hasson, T., Kelley, P. M., Schwender, B. J., Schwartz, M. F., Ramakrishnan, M., Kimberling, W. J., Mooseker, M. S. and Corey, D. P. (1996). Molecular cloning and domain structure of human myosin-VIIa, the gene product defective in Usher syndrome 1B. Genomics 36, 440–448.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z. Y., Hasson, T., Zhang, D. S., Schwender, B. J., Derfler, B. H., Mooseker, M. S. and Corey, D. P. (2001). Myosin-VIIb, a novel unconventional myosin, is a constituent of microvilli in transporting epithelia. Genomics 72, 285–296.

    Article  PubMed  CAS  Google Scholar 

  • Cheney, R. E., Riley, M. A. and Mooseker, M. S. (1993). Phylogenetic analysis of the myosin superfamily. Cell Motil. Cytoskeleton 24, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, A. I. (1963). Vertebrate retinal cells and their organization. Biol. rev. Cambridge Philos. Soc. 38, 427–459.

    Google Scholar 

  • Corey, D. P. and Hudspeth, A. J. (1983). Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3, 962–976.

    PubMed  CAS  Google Scholar 

  • Delprat, B., Michel, V., Goodyear, R., Yamasaki, Y., Michalski, N., El-Amraoui, A., Perfettini, I., Legrain, P., Richardson, G., Hardelin, J. P. et al. (2005). Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum. Mol. Genet. 14, 401–410.

    Article  PubMed  CAS  Google Scholar 

  • Desnos, C., Schonn, J.-S., Huet, S., Tran, V. S., El-Amraoui, A., Raposo, G., Fanget, I., Chapuis, C., Ménasché, G., de Saint Basile, G. et al. (2003). Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J. Cell Biol. 163, 559–570.

    Google Scholar 

  • El-Amraoui, A., Sahly, I., Picaud, S., Sahel, J., Abitbol, M. and Petit, C. (1996). Human Usher IB/mouse shaker-1; the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Hum. Mol. Genet. 5, 1171–1178.

    Article  PubMed  CAS  Google Scholar 

  • El-Amraoui, A., Schonn, J.-S., Kússel-Andermann, P., Blanchard, S., Desnos, C., Henry, J.-P., Wolfrum, U., Darchen, F. and Petit, C. (2002). MyRIP, a novel Rab effector, enables myosin VIIa recruitment to retinal melanosomes. EMBO Rep. 3, 463–470.

    Article  PubMed  CAS  Google Scholar 

  • El-Amraoui, A. and Petit, C. (2005). Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J. Cell Sci. 118, 4593–4603.

    Article  PubMed  CAS  Google Scholar 

  • Ernest, S., Rauch, G.-J., Haffter, P., Geisler, R., Petit, C. and Nicolson, T. (2000). Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness. Hum. Mol. Genet. 9, 2189–2196.

    Google Scholar 

  • Etournay, R., El-Amraoui, A., Bahloul, A., Blanchard, S., Roux, I., Pézeron, G., Michalski, N., Daviet, L., Hardelin, J-P., Legrain, P. and Petit, C. (2005). PHR1, an integral membrane protein of the inner ear sensory cells, directly interacts with myosin 1c and myosin VIIa. J. Cell Sci. 118, 2891-2899.

    Google Scholar 

  • Etournay, R., Zwaenepoel, I., Perfettini, I., Legrain, P., Petit, C., and El-Amraoui, A. (2007). Shroom2, a myosin VIIa- and actin-binding protein, directly interacts with ZO-1 at tight junctions. J. Cell Sci. 120, 2838–28500.

    Article  PubMed  CAS  Google Scholar 

  • Fettiplace, R. (2006). Active hair bundle movements in auditory hair cells. J. Physiol. 576, 2929–36.

    Article  CAS  Google Scholar 

  • Foth, B. J., Goedecke, M. C. and Soldati, D. (2006). New insights into myosin evolution and classification. Proc. Natl Acad. Sci. USA 103, 3681–3686.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, M. and Kuroda, T. S. (2002). Slac2-c (synaptotagmin-like protein homologue lacking C2 domains-c), a novel linker protein that interacts with Rab27, myosin Va/VIIa, and actin. J. Biol. Chem. 277, 43096–43103.

    Article  PubMed  CAS  Google Scholar 

  • Futter, C. E. (2006). The molecular regulation of organelle transport in mammalian retinal pigment epithelial cells. Pigment Cell Res 19, 104–111.

    Article  PubMed  CAS  Google Scholar 

  • Futter, C. E., Ramalho, J. S., Jaissle, G. B., Seeliger, M. W. and Seabra, M. C. (2004). The role of Rab27a in the regulation of melanosome distribution within retinal pigment epithelial cells. Mol. Biol. Cell 15, 2264–2275.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, D., Kitamoto, J. and Williams, D. S. (2003). Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc. Natl Acad. Sci. USA 100, 6481–6486.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, D., Azarian, S. M., Lillo, C., Kitamoto, J., Klomp, A. E., Steel, K. P., Libby, R. T. and Williams, D. S. (2004). Role of myosin VIIa and Rab27a in the motility and localization of RPE melanosomes. J. Cell Sci. 117, 6473–6483.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K. A., Antonio, M., Beisel, K. W., Steel, K. P. and Brown, S. D. (1995). A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–64.

    Article  PubMed  CAS  Google Scholar 

  • Goodyear, R. and Richardson, G. (1999). The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J. Neurosci. 19, 3761–3772.

    PubMed  CAS  Google Scholar 

  • Goodyear, R. J., Marcotti, W., Kros, C. J. and Richardson, G. P. (2005). Development and properties of stereociliary link types in hair cells of the mouse cochlea. J. Comp. Neurol. 485, 75–85.

    Article  PubMed  Google Scholar 

  • Hasson, T., Heintzelman, M. B., Santos-Sacchi, J., Corey, D. P. and Mooseker, M. S. (1995). Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc. Natl Acad. Sci. USA 92, 9815–9819.

    Article  PubMed  CAS  Google Scholar 

  • Hasson, T., Gillespie, P. G., Garcia, J. A., MacDonald, R. B., Zhao, Y., Yee, A. G., Mooseker, M. S. and Corey, D. P. (1997). Unconventional myosins in inner-ear sensory epithelia. J. Cell Biol. 137, 1287–1307.

    Article  PubMed  CAS  Google Scholar 

  • Henn, A. and De La Cruz, E. M. (2005). Vertebrate myosin VIIb is a high duty ratio motor adapted for generating and maintaining tension. J. Biol. Chem. 280, 39665–39676.

    Google Scholar 

  • Holt, J. R., Gillespie, S. K., Provance, D. W., Shah, K., Shokat, K. M., Corey, D. P., Mercer, J. A. and Gillespie, P. G. (2002). A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–381.

    Article  PubMed  CAS  Google Scholar 

  • Howard, J., Roberts, W. M. and Hudspeth, A. J. (1988). Mechanoelectrical transduction by hair cells. Annu. Rev. Biophys. Biophys. Chem. 17, 99–124.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth, A. J., Choe, Y., Mehta, A. D. and Martin, P. (2000). Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc. Natl Acad. Sci. USA 97, 11765–11772.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, A. and Ikebe, M. (2003). Characterization of the motor activity of mammalian myosin VIIA. J. Biol. Chem. 278, 5478–5487.

    Article  PubMed  CAS  Google Scholar 

  • Kalloniatis, M. and Fletcher, E. L. (2005). Retinal degeneration: challenge and opportunity. Clin. Exp. Optom. 88, 265–266.

    Article  PubMed  Google Scholar 

  • Kiehart, D. P., Franke, J. D., Chee, M. K., Montague, R. A., Chen, T. L., Roote, J. and Ashburner, M. (2004). Drosophila crinkled, Mutations of Which Disrupt Morphogenesis and Cause Lethality, Encodes Fly Myosin VIIA. Genetics 168, 1337–1352.

    Article  PubMed  CAS  Google Scholar 

  • Klomp, A. E., Teofilo, K., Legacki, E. and Williams, D. S. (2007). Analysis of the linkage of MYRIP and MYO7A to melanosomes by RAB27A in retinal pigment epithelial cells. Cell Motil. Cytoskeleton. 64, 474–487.

    Article  PubMed  CAS  Google Scholar 

  • Knetsch, M. L., Uyeda, T. Q. and Manstein, D. J. (1999). Disturbed communication between actin- and nucleotide-binding sites in a myosin II with truncated 50/20-kDa junction. J. Biol. Chem. 274, 20133–20138.

    Article  PubMed  CAS  Google Scholar 

  • Knight, P. J., Thirumurugan, K., Xu, Y., Wang, F., Kalverda, A. P., Stafford, W. F., 3rd, Sellers, J. R. and Peckham, M. (2005). The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J. Biol. Chem. 280, 34702–34708.

    Article  PubMed  CAS  Google Scholar 

  • Kollmar, M. (2006). Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains. BMC Genomics 7, 183.

    Google Scholar 

  • Kremer, H., van Wijk, E., Marker, T., Wolfrum, U. and Roepman, R. (2006). Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum. Mol. Genet. 15 Spec No 2, R262–270.

    Google Scholar 

  • Krendel, M. and Mooseker, M. S. (2005). Myosins: tails (and heads) of functional diversity. Physiology (Bethesda) 20, 239–251.

    CAS  Google Scholar 

  • Kros, C. J., Marcotti, W., van Netten, S. M., Self, T. J., Libby, R. T., Brown, S. D., Richardson, G. P. and Steel, K. P. (2002). Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat. Neurosci. 5, 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda, T. S. and Fukuda, M. (2005). Functional analysis of Slac2-c/MyRIP as a linker protein between melanosomes and myosin VIIa. J. Biol. Chem. 280, 28015–28022.

    Article  PubMed  CAS  Google Scholar 

  • Kussel-Andermann, P., El-Amraoui, A., Safieddine, S., Hardelin, J. P., Nouaille, S., Camonis, J., and Petit, C. (2000a). Unconventional myosin VIIA is a novel A-kinase-anchoring protein. J. Biol. Chem. 275: 29654–29659.

    Google Scholar 

  • Kussel-Andermann, P., El-Amraoui, A., Safieddine, S., Nouaille, S., Perfettini, I., Lecuit, M., Cossart, P., Wolfrum, U. and Petit, C. (2000b). Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J. 19, 6020–6029.

    Article  CAS  Google Scholar 

  • Lillo, C., Kitamoto, J. and Williams, D. S. (2006). Roles and interactions of usher 1 proteins in the outer retina. Adv. Exp. Med. Biol. 572, 341–348.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Vansant, G., Udovichenko, I. P., Wolfrum, U. and Williams, D. S. (1997). Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells. Cell Motil. Cytoskeleton 37, 240–252.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Ondek, B. and Williams, D. S. (1998). Mutant myosin VIIa causes defective melanosome distribution in the RPE of shaker-1 mice. Nat. Genet. 19, 117–118.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Udovichenko, I. P., Brown, S. D., Steel, K. P. and Williams, D. S. (1999). Myosin VIIa participates in opsin transport through the photoreceptor cilium. J. Neurosci. 19, 6267–6274.

    PubMed  CAS  Google Scholar 

  • Mburu, P., Liu, X. Z., Walsh, J., Saw, D., Jr., Cope, M. J., Gibson, F., Kendrick-Jones, J., Steel, K. P. and Brown, S. D. (1997). Mutation analysis of the mouse myosin VIIA deafness gene. Genes Funct. 1, 191–203.

    PubMed  CAS  Google Scholar 

  • McGee, J., Goodyear, R. J., McMillan, D. R., Stauffer, E. A., Holt, J. R., Locke, K. G., Birch, D. G., Legan, P. K., White, P. C., Walsh, E. J. et al. (2006). The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J. Neurosci. 26, 6543–6553.

    Article  PubMed  CAS  Google Scholar 

  • Michalski, N., Michel, V., Bahloul, A., Lefévre, G., Chardenoux, S., Yagi, H., Weil, D., Hardelin, J.-P., Sato, M. and Petit, C. (2007). Molecular characterization of the ankle link complex in cochlear hair cells and its role in the hair bundle functioning. J. Neurosci. 27, 6478–6488.

    Article  PubMed  CAS  Google Scholar 

  • Michel, V., Goodyear, R. J., Weil, D., Marcotti, W., Perfettini, I., Wolfrum, U., Kros, C. J., Richardson, G. P. and Petit, C. (2005). Cadherin 23 is a component of the sensory hair bundle’s transient lateral links in the developing cochlea. Dev. Biol. 280, 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, M. A., Reczek, D., Bretscher, A. and Karplus, P. A. (2000). Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Petit, C. (2001). Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271–297.

    Article  PubMed  CAS  Google Scholar 

  • Reiners, J., Reidel, B., El-Amraoui, A., Boéda, B., Huber, I., Petit, C. and Wolfrum, U. (2003). Differential distribution of harmonin isoforms and their possible role in Usher-1 protein complexes in mammalian photoreceptor cells. Invest. Ophthalmol. Vis. Sci. 44, 5006–5015.

    Article  PubMed  Google Scholar 

  • Reiners, J., van Wijk, E., Marker, T., Zimmermann, U., Jurgens, K., te Brinke, H., Overlack, N., Roepman, R., Knipper, M., Kremer, H. et al. (2005). Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum. Mol. Genet. 14, 3933–3943.

    Google Scholar 

  • Reiners, J. and Wolfrum, U. (2006). Molecular analysis of the supramolecular usher protein complex in the retina. Harmonin as the key protein of the Usher syndrome. Adv. Exp. Med. Biol. 572, 349–353.

    CAS  Google Scholar 

  • Reiners, J., Nagel-Wolfrum, K., Jurgens, K., Marker, T. and Wolfrum, U. (2006). Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp. Eye Res. 83, 97–119.

    Article  PubMed  CAS  Google Scholar 

  • Richards, T. A. and Cavalier-Smith, T. (2005). Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118.

    Google Scholar 

  • Sahly, I., El-Amraoui, A., Abitbol, M., Petit, C. and Dufier, J.-L. (1997). Expression of myosin VIIA during mouse embryogenesis. Anat. Embryol. 196, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Schraermeyer, U., Peters, S., Thumann, G., Kociok, N. and Heimann, K. (1999). Melanin granules of retinal pigment epithelium are connected with the lysosomal degradation pathway. Exp. Eye Res. 68, 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Self, T., Mahony, M., Fleming, J., Walsh, J., Brown, S. D. and Steel, K. P. (1998). Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125, 557–566.

    PubMed  CAS  Google Scholar 

  • Senften, M., Schwander, M., Kazmierczak, P., Lillo, C., Shin, J. B., Hasson, T., Geleoc, G. S., Gillespie, P. G., Williams, D., Holt, J. R. et al. (2006). Physical and functional interaction between protocadherin 15 and myosin VIIa in mechanosensory hair cells. J. Neurosci 26, 2060–2071.

    Article  PubMed  CAS  Google Scholar 

  • Siemens, J., Kazmierczak, P., Reynolds, A., Sticker, M., Littlewood-Evans, A. and Muller, U. (2002). The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc. Natl Acad. Sci. USA 99, 14946–14951.

    Article  PubMed  CAS  Google Scholar 

  • Siemens, J., Lillo, C., Dumont, R. A., Reynolds, A., Williams, D. S., Gillespie, P. G. and Muller, U. (2004). Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 950–955.

    Article  PubMed  CAS  Google Scholar 

  • Soni, L. E., Warren, C. M., Bucci, C., Orten, D. J. and Hasson, T. (2005). The unconventional myosin-VIIa associates with lysosomes. Cell Motil. Cytoskeleton 62, 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, H. L. and Houdusse, A. (2007). What can myosin VI do in cells? Curr. Opin. Cell Biol. 19, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R. F. and Langford, G. M. (2002). Myosin superfamily evolutionary history. Anat. Rec. 268, 276–289.

    Article  PubMed  CAS  Google Scholar 

  • Titus, M. A. (1999). A class VII unconventional myosin is required for phagocytosis. Curr. Biol. 9, 1297–1303.

    Article  PubMed  CAS  Google Scholar 

  • Todi, S. V., Franke, J. D., Kiehart, D. P. and Eberl, D. F. (2005). Myosin VIIA defects, which underlie the Usher 1B syndrome in humans, lead to deafness in Drosophila. Curr. Biol. 15, 862–868.

    Article  PubMed  CAS  Google Scholar 

  • Todorov, P. T., Hardisty, R. E. and Brown, S. D. (2001). Myosin VIIA is specifically associated with calmodulin and microtubule-associated protein-2B (MAP-2B). Biochem. J. 354, 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Tuxworth, R. I., Weber, I., Wessels, D., Addicks, G. C., Soll, D. R., Gerisch, G. and Titus, M. A. (2001). A role for myosin VII in dynamic cell adhesion. Curr. Biol. 11, 318–329.

    Article  PubMed  CAS  Google Scholar 

  • Tzolovsky, G., Millo, H., Pathirana, S., Wood, T., and Bownes, M. (2002). Identification and phylogenetic analysis of Drosophila melanogaster myosins. Mol. Biol. Evol.19,1041–1052.

    Google Scholar 

  • Udovichenko, I. P., Gibbs, D. and Williams, D. S. (2002). Actin-based motor properties of native myosin VIIa. J. Cell Sci. 115, 445–450.

    PubMed  CAS  Google Scholar 

  • Velichkova, M., Guttman, J., Warren, C., Eng, L., Kline, K., Vogl, A. W. and Hasson, T. (2002). A human homologue of Drosophila kelch associates with myosin-VIIa in specialized adhesion junctions. Cell Motil. Cytoskeleton 51, 147–164.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, S., Ikebe, R. and Ikebe, M. (2006). Drosophila myosin VIIA is a high duty ratio motor with a unique kinetic mechanism. J. Biol. Chem. 281, 7151–7160.

    Article  PubMed  CAS  Google Scholar 

  • Weber, K. L., Sokac, A. M., Berg, J. S., Cheney, R. E. and Bement, W. M. (2004). A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., Mburu, P., Varela, A., Levilliers, J., Weston, M. D. et al. (1995). Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60–61.

    Article  PubMed  CAS  Google Scholar 

  • Weil, D., El-Amraoui, A., Masmoudi, S., Mustapha, M., Kikkawa, Y., Lainé, S., Delmaghani, S., Adato, A., Nadifi, S., Ben Zina, Z., Hamel, C., Gal, A., Ayadi, H., Yonekawa, H., and Petit, C. (2003). Usher syndrome type 1 G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum. Mol. Genet. 12,463-471.

    Google Scholar 

  • Weil, D., Levy, G., Sahly, I., Levi-Acobas, F., Blanchard, S., El-Amraoui, A., Crozet, F., Philippe, H., Abitbol, M. and Petit, C. (1996). Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc. Natl Acad. Sci. USA 93, 3232–3237.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D. S., Linberg, K. A., Vaughan, D. K., Fariss, R. N. and Fisher, S. K. (1988). Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors. J. Comp Neurol. 272, 161–176.

    Article  PubMed  CAS  Google Scholar 

  • Wolfrum, U., Liu, X., Schmitt, A., Udovichenko, I. P. and Williams, D. S. (1998). Myosin VIIa as a common component of cilia and microvilli. Cell Motil. Cytoskeleton 40, 261–271.

    Article  PubMed  CAS  Google Scholar 

  • Wolfrum, U. and Schmitt, A. (1999). Evidence for myosin VIIa-driven transport of rhodopsin in the plasma membrane of the photoreceptor-connecting cilium. In Retinal Degenerative Diseases and Experimental Therapy, (eds J. G. Hollyfield and e. al), pp. 3–14. New York: Kluwer Academic/Plenum Publ.

    Google Scholar 

  • Wolfrum, U. and Schmitt, A. (2000). Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil. Cytoskeleton 46, 95–107.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Kovacs, M., Xu, Q., Anderson, J. B. and Sellers, J. R. (2005). Myosin VIIB from Drosophila is a high duty ratio motor. J. Biol. Chem. 280, 32061–32068.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Kovacs, M., Sakamoto, T., Zhang, F., Kiehart, D. P. and Sellers, J. R. (2006). Dimerized Drosophila myosin VIIa: a processive motor. Proc. Natl Acad. Sci. USA 103, 5746–5751.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

El-Amraoui, A., Bahloul, A., Petit, C. (2008). Myosin VII. In: Myosins. Proteins and Cell Regulation, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6519-4_11

Download citation

Publish with us

Policies and ethics