Skip to main content

The Arithmetical Origin of the Genetic Code

  • Chapter

Part of the book series: Biosemiotics ((BSEM,volume 1))

Physics and chemistry are indifferent to the internal syntax of numerical language of arithmetic and, in particular, to the number system that this language employs. All they require from arithmetic is quantitative data. Absence of a privileged numerical system inherent to an object must therefore be a necessary condition of its natural origin. Recent research, however, has found an exception. That object is the universal genetic code. The genetic code turns out to be a syntactic structure of arithmetic, the result of unique summations that have been carried out by some primordial abacus at least three and half billion years ago. The decimal place-value numerical system with a zero conception was used for that arithmetic. It turned out that the zero sign governed the genetic code not only as an integral part of the decimal system, but also directly as an acting arithmetical symbol. Being non-material abstractions, all the zero, decimal syntax and unique summations can display an artificial nature of the genetic code. They refute traditional ideas about the stochastic origin of the genetic code. A new order in the genetic code hardly ever went through chemical evolution and, seemingly, originally appeared as pure information like arithmetic itself.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apollinaire, G., 1980. Calligrammes. University of California Press, Los Angeles/London:.

    Google Scholar 

  • Barbieri, M., 2005. Life is “artifact-making”. J. Biosemiotics 1, 113–142.

    Google Scholar 

  • Bennet, M. D., 1977. The time and duration of meiosis. Phil. Trans. R. Soc. Lond. B. 277, 201–226.

    Article  Google Scholar 

  • Chiusano, M. L., Alvarez-Valin, F., Di Giulio, M., D’Onofrio, G., Ammirato, G., Colonna, G., and Bernardi, G., 2000. Second codon positions of genes and the secondary structures of proteins. Relationships and implications for the origin of the genetic code. Gene 261, 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Crick, F. H. C., 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555.

    Article  CAS  PubMed  Google Scholar 

  • Crick, F. H. C., 1968. The origin of the genetic code. J. Mol. Biol. 38, 367–379.

    Article  CAS  PubMed  Google Scholar 

  • Crick, F. H. C. and Orgel, L. E., 1973. Directed panspermia. Icarus 19, 341–346.

    Article  Google Scholar 

  • Dewachter, M., 1990. Champollion, un scribe pour l’Egypte. Coll. Découvertes, Gallimard, Paris.

    Google Scholar 

  • Downes, A. M. and Richardson, B. J., 2002. Relationships between genomic base content and distribution of mass in coded proteins. J. Mol. Evol. 55, 476–490.

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio, M., 1989. Some aspects of the organization and evolution of the genetic code. J. Mol. Evol. 29, 191–201.

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio, M. and Medugno, M., 2001. The level and landscape of optimization in the origin of the genetic code. J. Mol. Evol. 52, 372–382.

    CAS  PubMed  Google Scholar 

  • Eigen, M. and Winkler, R., 1985. Das Spiel. Piper Verlag, München, Zürich, pp. 281–316.

    Google Scholar 

  • Figureau, A., 1987. Information theory and the genetic code. Origins Life 17, 439–449.

    Article  CAS  Google Scholar 

  • Freeland, S. J. and Hurst, L. D., 1998. The genetic code is one in a million. J. Mol. Evol. 47, 238–248.

    Article  CAS  PubMed  Google Scholar 

  • Gamow, G., 1954. Possible relation between deoxyribonucleic acid and protein structures. Nature 173, 318.

    Article  CAS  Google Scholar 

  • Gonzalez, D. L., Giannerini, S., and Rosa, R., 2006. Detecting structure in parity binary sequences: error correction and detection in DNA. IEEE Eng. Med. Biol. Mag.. Jan./Feb, 69–81.

    Google Scholar 

  • Grimm, M., Brünen-Nieweler, C., Junker, V., Heckmann, K., and Beier, H., 1998. The hypotrichous ciliate Euplotes octocarinatus has only one type of tRNACys with GCA anticodon encoded on a single macromolecular DNA molecule. Nucleic Acids Res. 26, 4557–4565.

    Article  CAS  PubMed  Google Scholar 

  • Gusev V. A. and Shulze-Makuch D., 2004. Genetic code: Lucky chance or fundamental law of nature? Phy. Life Rev. 1, 202–229.

    Article  Google Scholar 

  • Hasegawa, M. and Miyata, T., 1980. On the antisymmetry of the amino acid code table. Origins Life 10, 265–270.

    Article  CAS  Google Scholar 

  • Jukes, T. H., 1983. Evolution of the amino acid code: inferences from mitochondrial codes. J. Mol. Evol. 19, 219–225.

    Article  CAS  PubMed  Google Scholar 

  • Jukes, T. H. and Osawa, S., 1990. The genetic code in mitochondria and chloroplasts. Experientia 46, Birkhäuser Verlag, CH-4010 Basel/Switzerland, 1117–1133.

    Article  CAS  PubMed  Google Scholar 

  • Jungck, J. R., 1978. The genetic code as periodic table. J. Mol. Evol. 11, 211–224.

    Article  CAS  PubMed  Google Scholar 

  • Kashkarov, V. V., Krassovitskiy, A. M., Mamleev, V. S., and shCherbak, V. I., 2002. Random sequences of proteins are exactly balanced like the canonical base pairs of DNA. In: Proceedings of the 10th ISSOL Meeting and 13th International Conference on the Origin of Life. Oaxaca City, Mexico, June 30–July 4.

    Google Scholar 

  • Knight, R. D., Freeland, S. J., and Landweber, L. F., 1999. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem. Sci. 24, 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Lacey, J. C. Jr. and Mullins, D. W. Jr., 1983. Experimental studies related to the origin of the genetic code and the process of protein synthesis—a review. Origins Life 13, 3–42.

    Article  CAS  Google Scholar 

  • Mac Dynaill, D. A., 2002. A parity code interpretation of nucleotide alphabet composition. Chem. Commun. 18, 2062–2063.

    Google Scholar 

  • Marshal, R. E., Cascey, T. C., and Nirenberg, M., 1967. Fine structure of RNA codewords recognized by bacterial, amphibian and mammalian transfer RNA. Science 155, 820–825.

    Article  Google Scholar 

  • Marx, G., 1979. The message through time. Acta astronaut. 6, 221–226.

    Article  Google Scholar 

  • Meyer, F., Schmidt, H. I., Plümper, E., Hasilik, A., Mersmann, G., Meyer, H. E., Engström, A., and Heckmann, K., 1991. UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. Proc. Natl. Acad. Sci. U.S.A. 88, 3758–3761.

    Article  CAS  PubMed  Google Scholar 

  • Négadi, T., 2004. Symmetry groups for the Rumer-Konopel’chenko-shCherbak “bisections” of the genetic code and applications, Internet Electron. J. Mol. Des. 3, 247–270. Available at: http://www.biochempress.com.

  • Nirenberg, M., Leder, P., Bernfield, M., Brimacombe, R., Trupin, J., Rottman, F., and O’Neal, C., 1965. RNA codewords and protein synthesis, VII. On the general nature of the RNA code. Proc. Natl. Acad. Sci. U. S. A. 53(5), 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  • Rakočević, M. M., 2004. A harmonic structure of the genetic code. J. Theor. Biol. 229, 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Rumer, Yu. B., 1966. About systematization of the codons of the genetic code. Dokl. Acad. Nauk. SSSR 167, 1393–1394.

    CAS  Google Scholar 

  • Schutzenberger, M.-P., Gavaudan, P., and Besson, J., 1969. Sur l’existence d’une certaine correlation entre le poids moleculaire des acides amines et le nombre de triplets intervenan dans leur codage. CR Acad. Sc. Paris, Serie D 268, 1342–1344.

    CAS  Google Scholar 

  • shCherbak, V. I., 1988. The co-operative symmetry of the genetic code. J. Theor. Biol. 132, 121–124.

    Article  CAS  PubMed  Google Scholar 

  • shCherbak, V. I., 1989a. Rumer’s rule and transformation in the context of the co-operative symmetry of the genetic code. J. Theor. Biol. 139, 271–276.

    Article  CAS  PubMed  Google Scholar 

  • shCherbak, V. I., 1989b. Ways of wobble pairing are formalized with the co-operative symmetry of the genetic code. J. Theor. Biol. 139, 277–281.

    Article  CAS  PubMed  Google Scholar 

  • shCherbak, V. I., 1989c. The “START” and “STOP” of the genetic code: why exactly ATG and TAG, TAA? J. Theor. Biol. 139, 283–286.

    Article  CAS  PubMed  Google Scholar 

  • shCherbak, V. I., 1989d. The information artefact of the genetic code. In: Proceedings of the 6th ISSOL Meeting and 9th International Conference Origin of Life, Book of Abstract, Prague, July 3–8, Czechoslovakia.

    Google Scholar 

  • shCherbak, V. I., 1993a. The symmetrical architecture of the genetic code systematization principle. J. Theor. Biol. 162, 395–398.

    Article  CAS  PubMed  Google Scholar 

  • shCherbak, V. I., 1993b. Twenty canonical amino acids of the genetic code: the arithmetical regularities. Part I. J. Theor. Biol. 162, 399–401.

    Article  CAS  PubMed  Google Scholar 

  • shCherbak, V. I., 1994. Sixty-four triplets and 20 canonical amino acids of the genetic code: the arithmetical regularities. Part II. J. Theor. Biol. 166, 475–477.

    Article  CAS  PubMed  Google Scholar 

  • shCherbak, V. I., 1996. A new manifestation of the arithmetical regularity suggests the universal genetic code distinguishes the decimal system. In: Proceedings of the 8th ISSOL Meeting of the 11th International Conference Origin of Life. Book of Abstracts, Orleans July 5–12, France.

    Google Scholar 

  • shCherbak, V. I., 1999. A new manifestation of the decimal system in the genetic code. In: Proceedings of the 9th ISSOL Meeting and of the 12th International Conference Origin of Life. Book of Abstracts, San-Diego, July 11–16, USA.

    Google Scholar 

  • shCherbak, V. I., 2003. Arithmetic inside the universal genetic code. BioSystems 70, 187–209.

    Article  CAS  PubMed  Google Scholar 

  • shCherbak, V. I., 2005. The origins of life and arithmetic zero. In: Proceedings of the 11th ISSOL Meeting and 14th International Conference on the Origin of Life. Book of Abstract, Beijing, June 6–11, People’s Republic of China.

    Google Scholar 

  • Shulz, G. E. and Schirmer, R. H., 1979. Principles of Protein Structure. Springer-Verlag, New York, Heidelberg, Berlin.

    Google Scholar 

  • Sjöström, M. and Wold, S., 1985. A multivariate study of the relationship between the genetic code and the physical-chemical properties of amino acids. J. Mol. Evol. 22, 272–277.

    Article  PubMed  Google Scholar 

  • Spengler, O., 1922. Der Untergang des Abendlandes. Umrisse einer Morphologie der Weltgeschichte. C.H. Beck Verlag, München.

    Google Scholar 

  • Taylor F. J. R. and Coates D., 1989. The code within the codons. BioSystems 22, 117–187.

    Article  Google Scholar 

  • Yockey, H. P., 2000. Origin of life on earth and Shannon’s theory of communication. Comput. Chem. 24, 105–123.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

shCherbak, V. (2008). The Arithmetical Origin of the Genetic Code. In: Barbieri, M., Hoffmeyer, J. (eds) The Codes of Life. Biosemiotics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6340-4_7

Download citation

Publish with us

Policies and ethics