Skip to main content

Spectral-Like Accuracy in Space of a Meshless Vortex Method

  • Conference paper
Advances in Meshfree Techniques

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 5))

Abstract

The convergence of a meshless vortex method is studied numerically. The method uses core spreading for diffusion and radial basis function interpolation for spatial adaption of the Lagrangian particles. Spectral accuracy in space is observed in the absence of convection error, and second order of convergence is obtained it its presence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L. Curfman-McInnes, B. F. Smith, and H. Zhang. PETSc User’s Manual. Technical Report ANL-95/11 — Revision 2.1.5, Argonne National Laboratory, 2002.

    Google Scholar 

  2. L. A. Barba. Vortex method for computing high-Reynolds number flows: Increased accuracy with a fully mesh-less formulation. PhD Thesis, California Institute of Technology, 2004.

    Google Scholar 

  3. L. A. Barba. Discussion: Three-dimensional vortex method for gas-particle two-phase compound round jet (Uchiyama, T., and Fukase, A. 2005 ASME J. Fluids Eng., 127, pp. 32–40). J. Fluids Eng., 128:643–645, May 2006.

    Article  Google Scholar 

  4. L. A. Barba and A. Leonard. Emergence and evolution of tripole vortices from non-shielded initial conditions. Submitted, 2006.

    Google Scholar 

  5. L. A. Barba, A. Leonard, and C. B. Allen. Numerical investigations on the accuracy of the vortex method with and without remeshing. AIAA #2003-3426, 16th CFD Conference, Orlando FL, June 2003.

    Google Scholar 

  6. L. A. Barba, A. Leonard, and C. B. Allen. Advances in viscous vortex methods-Meshless spatial adaption based on radial basis function interpolation. Int. J. Num. Meth. Fluids, 47(5):387–421, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  7. G.-H. Cottet and P. Koumoutsakos. Vortex Methods. Theory and Practice. Cambridge University Press, 2000.

    Google Scholar 

  8. P. Degond and S. Mas-Gallic. The weighted particle method for convection-diffusion equations. Part 1. The case of an isotropic viscosity. Math. Comp., 53:485–507, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Greengard. The core spreading vortex method approximates the wrong equation. J. Comp. Phys., 61:345–348, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys., 73:325–348, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Koumoutsakos. Inviscid axisymmetrization of an elliptical vortex. J. Comp. Phys., 138:821–857, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Leonard. Vortex methods for flow simulation. J. Comp. Phys., 37:289–335, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. J. Roache. Quantification of uncertainty in computational fluid dynamics. Ann. Rev. Fluid Mech., 29:123–160, 1997.

    Article  MathSciNet  Google Scholar 

  14. L. Rosenhead. The formation of vortices from a surface of discontinuity. Proc. R. Soc. Lond. A, 134:170–192, 1931.

    Article  MATH  Google Scholar 

  15. L. F. Rossi. Resurrecting core spreading vortex methods: A new scheme that is both deterministic and convergent. SIAM J. Sci. Comput., 17:370–397, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. F. Rossi. Achieving high-order convergence rates with deforming basis functions. SIAM J. Sci. Comput., 26(3):885–906, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. F. Rossi, J. F. Lingevitch, and A. J. Bernoff. Quasi-steady monopole and tripole attractors for relaxing vortices. Phys. Fluids, 9:2329–2338, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Sarpkaya. Computational methods with vortices. J. Fluids Eng., 11:5–52, 1989.

    Google Scholar 

  19. R. Schaback. Improved error bounds for scattered data interpolation by radial basis functions. Math. Comp., 68(225):201–216, 1999.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Barba, L.A. (2007). Spectral-Like Accuracy in Space of a Meshless Vortex Method. In: Leitão, V.M.A., Alves, C.J.S., Armando Duarte, C. (eds) Advances in Meshfree Techniques. Computational Methods in Applied Sciences, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6095-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6095-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6094-6

  • Online ISBN: 978-1-4020-6095-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics