Skip to main content

Microelectronics of Recording, Stimulation, and Wireless Telemetry for Neuroprosthetics: Design and Optimization

  • Chapter
  • First Online:
Implantable Neural Prostheses 2

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

This chapter focuses on how to interface biological systems with electronics so as to implement bio-instruments to obtain the in-depth understandings about the animal behavior and human brain activities, and complex neuroprosthetic devices to treat various neurological diseases. The interdisciplinary nature of the system requires a wide range of knowledge on both biology and electronics to build such systems. A unique environment where the system should operate imposes challenging design constraints and system issues, which can be solved only by considering both biology and electronics simultaneously. Fundamental building circuits including amplifiers, filters, analog-to-digital converters (ADCs) are addressed first and subsystems which consist of those basic circuits are explained with emphasis on trade-offs which should be considered carefully to achieve optimal design. Several state-of-art systems such as integrated wireless neural-recording systems and retinal prostheses are presented to explain how the fundamental knowledge and principles are used in the real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544.

    Google Scholar 

  2. Liu W, Humayun MS (2004) Retinal prosthesis Solid-State Circuits Conference. Digest of Technical Papers. IEEE Int ISSCC, Vol. 1, pp. 218–219, 15–19 Feb. 2004.

    Google Scholar 

  3. Ortmanns M, Rocke A, Gehrke M, Tiedtke HJ (2007) A 232-Channel epiretinal stimulator ASIC. IEEE J Solid-State Circ 42(12): 2946–2959, Dec. 2007.

    Article  Google Scholar 

  4. Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3-D neuroprosthetic devices. Science 296: 1829–1832, June 2002.

    Article  Google Scholar 

  5. Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27: 487–501, July 2004.

    Article  Google Scholar 

  6. Jackson A, Moritz CT, Mavoori J, Lucas TH, Fetz EE (2006) The Neurochip BCI: Towards a neural prosthesis for upper limb function. IEEE Trans Neural Syst Rehabil Eng 14(2): 187–190, June 2006.

    Article  Google Scholar 

  7. Anschel DJ, Ortega EL, Kraus AC, Fisher RS (2004) Focally injected adenosine prevents seizures in the rat. Exp Neurol 190: 544–457.

    Google Scholar 

  8. Bhatti PT, Lee S, Wise KD (2006) A 32-site 4-channel cochlear electrode array. IEEE J Solid-State Circ 41:2965–2973, Dec. 2006.

    Google Scholar 

  9. Limousin P, Krack P, Pollack P, Benazzouz A, Ardouin C, Hoffmann D, Benabid A (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New Eng J Med 339: 1105–1111.

    Article  Google Scholar 

  10. Chae M, Liu W, Sivaprakasam M (2008) Design optimization for integrated neural recording systems. IEEE J Solid-State Circ 43: 1931–1939

    Article  Google Scholar 

  11. Ferris CD (1978) Introduction to Bioinstrumentation. Humana, Clifton NJ.

    Google Scholar 

  12. Olsson RH, Gulari MN, Wise KD (2002) Silicon neural recording arrays with on-chip electronics for in-vivo data acquisition. IEEE EMBS Int Conf 237–240

    Google Scholar 

  13. Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circuits 38: 958–965

    Article  Google Scholar 

  14. Chae M, Kim J, Liu W (2008) Fully-differential self-biased bio-potential amplifier. Electron Lett 44: 1390–1391.

    Article  Google Scholar 

  15. Dagtekin M, Liu W, Bashirullah R (2001) A multichannel chopper modulated neural recording system. Proc IEEE EMBS Int Conf 757–760.

    Google Scholar 

  16. Denison T, Consoer K, Santa W, Avestruz AT, Cooley J, Kelly A (2007) A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J Solid-State Circ 42: 2934–2945

    Article  Google Scholar 

  17. Harrison R (2008) The design of integrated circuits to observe brain activity. Proc IEEE 96:1203–1216.

    Article  Google Scholar 

  18. Razavi B (2001) Design of Analog CMOS Integrated Circuits. McGraw-Hill, Boston, MA.

    Google Scholar 

  19. Vogels M, Gielen G (2003) Architectural selection of A/D converters. In Proc. Design Automation Conference, June 2–6, 2003, pp. 974–977

    Google Scholar 

  20. Scott M. D, Boser B. E, Pister S. J(2003) An ultralow-energy ADC for smart dust. IEEE J Solid-State Circ. 38(7): 1123–1129, July 2003.

    Article  Google Scholar 

  21. Kugelstadt T (2000) The operation of the SAR-ADC based on charge redistribution. Tex Inst Analog Appl J 10–12, Feb. 2000.

    Google Scholar 

  22. Pang C, Cham JG, Nenadic Z, Musallam S, Tai YC, Burdick JW, Andersen RA (2005) A new multi-site probe array with monolithically integrated parylene flexible cable for neural prostheses. In Proc. 27th Annu. Int. Conf. Engineering in Medicine and Biology Soc., Shanghai, China, Sep. 1–4, 2005, pp. 7114–7117.

    Google Scholar 

  23. Demichele GA, Troyk PR (2003) Integrated multichannel wireless biotelemetry system. In Proc. 25th IEEE EMBS Int. Conf., Cancun, Mexico, Sep. 17–21, pp. 3372–3375.

    Google Scholar 

  24. Obeid IL, Nicolelis MA, Wolf PD (2004) A multichannel telemetry system for single unit neural recordings. J Neurosci Methods 133: 123–135, Feb. 2004.

    Google Scholar 

  25. Mohseni P, Najafi K (2005) A battery-powered 8-channel wireless FM IC for biopotential recording applications. In Dig. Tech. Papers 2005 IEEE Int Solid-State Circ Conf, San Francisco, CA, Feb. 6–10, 2005, pp. 560–561.

    Google Scholar 

  26. Harrison R, Watkins P, Kier R, Lovejoy R, Black D, Normann R, Solzbacher F (2006) A low-power integrated circuit for a wireless 100-electrode neural recording system. In Dig. Tech. Papers 2006 IEEE Int Solid-State Circuits Conf, San Francisco, CA, Feb. 6–9, 2006, pp. 2258–2267.

    Google Scholar 

  27. O’Driscoll S, Meng T, Shenoy K, Kemere C (2006) Neurons to silicon: Implantable prosthesis processor. In Dig. Tech. Papers 2006 IEEE Int Solid-State Circ Conf, San Francisco, CA, Feb. 6–9, 2006, pp. 2248–2257.

    Google Scholar 

  28. Harrison R, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circ 38(6): 958–965, June 2003.

    Article  Google Scholar 

  29. Ferris CD (1978) Introduction to Bioinstrumentation. Humana, Clifton, NJ.

    Google Scholar 

  30. Liu W, Sivaprakasam M, Wang G, Chae MS (2006) A neural recording system for monitoring shark behavior. In Proc. IEEE Int. Symp. Circuits and Systems, May 21–24, 2006, pp. 4123–4236.

    Google Scholar 

  31. Razavi B (2001) Design of Analog CMOS Integrated Circuits, 2nd edn. McGraw-Hill, Boston, MA, Chapter 18, pp. 653–655.

    Google Scholar 

  32. Vogels M, Gielen G (2003) Architectural selection of A/D converters. In Proc. Design Automation Conference, June 2–6, pp. 974–977.

    Google Scholar 

  33. Scott MD, Boser BE, Pister SJ (2003) An ultralow-energy ADC for smart dust. IEEE J Solid-State Circ 38(7): 1123–1129, July 2003.

    Article  Google Scholar 

  34. Robinson DA (1968) The electrical properties of metal microelectrodes. Proceedings of the IEEE, 56(6): 1065–1071, June 1968.

    Article  Google Scholar 

  35. Fee MS, Mitra PP, Kleinfeld D (1996) Variability of extracellular spike waveforms of cortical neurons. J Neurophysiol 76:3823–3833.

    Google Scholar 

  36. Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network Comput Neural Syst 9:53–78.

    Article  Google Scholar 

  37. Rutishauser U, Schuman EM, Mamelak AN (2006) Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings in vivo. J Neurosci Methods. 154(1–2):204–224, June 2006.

    Article  Google Scholar 

  38. Wood F, Black MJ, Vargas-Irwin C, Fellows M, Donoghue JP (2004) On the variability of manual spike sorting. IEEE Trans Biomed Eng 51(6): 912–918, June 2004.

    Article  Google Scholar 

  39. Chapin JK (2004) Using multi-neuron population recordings for neural prosthetics. Nat Neurosci 7: 452–455, Apr. 2004.

    Article  Google Scholar 

  40. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature. 416: 141–142.

    Article  Google Scholar 

  41. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 442: 164–171.

    Article  Google Scholar 

  42. Quirk MC, Blum KI, Wilson MA (2001) Experience-dependent changes in extracellular spike amplitude may reflect regulation of dendritic action potential back-propagation in rat hippocampal pyramidal cells. J f Neurosci 21(1): 240–248, Jan. 2001.

    Google Scholar 

  43. Kaneko H, Tamura H, Suzuki SS (2007) Tracking spike-amplitude changes to improve the quality of multineuronal data analysis. IEEE Trans Biomed Eng 54(2): 262–272, Feb. 2007.

    Article  Google Scholar 

  44. Bar-Hillel A, Spiro A, Stark E (2006) Spike sorting: Bayesian clustering of non-stationary data. J Neurosci 157(2): 303–316, Oct. 2006.

    Google Scholar 

  45. Zumsteg ZS, Kemere C, O’Driscoll S, Santhanam G, Ahmed RE, Shenoy KV, et al. (2005) Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems. IEEE Trans Neural Syst Rehabil Eng 13(3):272–279, Sep. 2005.

    Article  Google Scholar 

  46. Thakur PH, Lu H, Hsiao SS, Johnson KO (2007) Automated optimal detection and classification of neural action potentials in extra-cellular recordings. J Neurosci Methods 162(1):364–376, May 2007.

    Article  Google Scholar 

  47. Lewicki MS (1994) Bayesian modeling and classification of neural signals. Advances NIPS 590–597.

    Google Scholar 

  48. Vargas-IrwinC, Donoghue JP (2007) Automated spike sorting using density grid contour clustering and subtractive waveform decomposition. J Neurosci Methods; 164(1):1–18.

    Google Scholar 

  49. Lewicki MS (1994) Bayesian modeling and classification of neural signals. Neural Comput 6:1005–1030.

    Article  MATH  Google Scholar 

  50. Vollgraf R, Obermayer K (2006) Improved optimal linear filters for the discrimination of multichannel waveform templates for spike-sorting applications. IEEE Signal Proc Lett. 13(3):121–124, Mar 2006.

    Article  Google Scholar 

  51. Zhang P, Wu J, Zhou Y, Liang P, Yuan J (2004) Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. J Neurosci Methods. 7(5):446–451, May 2004.

    Google Scholar 

  52. Letelier JC, Weber PP (2000) Spike sorting based on discrete wavelet transform coe_cients. J Neurosci Methods 101:93–106.

    Google Scholar 

  53. Quian Quiroga R, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16(8):1661–1687, Aug. 2004.

    Article  MATH  Google Scholar 

  54. Pavlov A, Makarov VA, Makarova I, Panetsos F (2007) Sorting of neural spikes: When wavelet based methods outperform principal component analysis. Natural Computing. 6(3):269–281, Sep. 2007.

    Article  MATH  MathSciNet  Google Scholar 

  55. Takahashi S, Sakurai Y (2007) Coding of spatial information by soma and dendrite of pyramidal cells in the hippocampal CA1 of behaving rats. Eur J Neurosci Methods 26(7):2033–2045, Oct. 2007.

    Article  Google Scholar 

  56. Sakurai Y, Tamura H, Takahashi S (2006) Dynamic synchrony of firing in the monkey prefrontal cortex during working-memory tasks. J Neurosci. 26(40):10141–10153, Oct. 2006.

    Article  Google Scholar 

  57. Snellings A, Anderson D, Aldridge J (2006) Improved signal and reduced noise in neural recordings from closespaced electrode arrays using independent component analysis as a preprocessor. J Neurosci Methods 150(2):254–264, Jan. 2006.

    Article  Google Scholar 

  58. Takahashi S, Sakurai Y (2005) Real-time and automatic sorting of multi-neuronal activity for sub-millisecond interactions in vivo. Neuroscience 134:301–315, Mar. 2005.

    Article  Google Scholar 

  59. Mamlouk AM, Sharp H, Menne KML, Hofmann UG, Martinetz T (2005) Unsupervised spike sorting with ICA and its evaluation using GENESIS simulations. Neurocomputing 65:65–66.

    Google Scholar 

  60. Delescluse M, Pouzat C (2006) E_cient spike-sorting of multi-state neurons using inter-spike intervals information. J Neurosci Methods 150(1):16–29, Jan. 2006.

    Article  Google Scholar 

  61. Yang Z, Zhao Q, Liu W (2009) Spike Feature Extraction Using Informative Samples. Spot light presentation Advances in Neural Information Processing Systems NIPS, 2009, MIT Press, Cambridge, MA.

    Google Scholar 

  62. Yang Z, Zhao Q, Liu W. Neural Signal Classification Using a Simplified Feature Set with Energy Based Non-parametric Clustering. To appear in Neurocomputing.

    Google Scholar 

  63. Jung HK, Choi JH, Kim T (2006) Solving alignment problems in neural spike sorting using frequency domain PCA. Neurocomputing 69(7–9):975–978, Mar. 2006.

    Article  Google Scholar 

  64. Blanche TJ, Swindale NV (2006) Nyquist interpolation improves neuron yield in multiunit recordings. J Neurosci Methods 155(1):207–216, July 2006.

    Article  Google Scholar 

  65. Sahani M (1999) Latent variable modelss for neural data analysis. PhD dissertation, California Institute of Technology.

    Google Scholar 

  66. Shenoy KV, Santhanam G, Ryu SI, Afshar A, Yu BM, Gilja V, et al. (2006) Increasing the performance of cortically-controlled prostheses. Proc 28th Ann Int Conf IEEE EMBS, p. 6652–6656.

    Google Scholar 

  67. Yang Z, Chen T, Liu W (2008) Neuron signature based spike feature extraction algorithm for on- chip implementation. Lecture Proc. 30th Ann. Int. Conf. IEEE EMBS, pp. 1716–1719, August 2008.

    Google Scholar 

  68. Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comp Neurosci 6(2):169–184, Mar. 1999.

    Article  MATH  Google Scholar 

  69. Buzsaki G, Penttonen M, Nadasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc Natl Acad Sci USA 93(18):9921–9925, Sep. 1996.

    Article  Google Scholar 

  70. Tuckwell HC (1988) Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge.

    Google Scholar 

  71. Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66(2):635–650.

    Google Scholar 

  72. Greenberg RJ, Velte TJ, Humanyun MS, Scarlatis GN, De Juan EJ (1996) A computational model of electrical stimulation of the retinal ganglion cell. IEEE Trans Biomed Eng 46(5):505–514, May 1999.

    Article  Google Scholar 

  73. Rattay R (1989) Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng 36:676–692.

    Article  Google Scholar 

  74. Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451, May 2004.

    Article  Google Scholar 

  75. Thurbon D, Field A, Redman S (1994) Electrotonic profiles of interneurons in stratum pVramidale of the CA1 region of rat hippocampus. J Neurophysiol 71(5):1948–1958.

    Google Scholar 

  76. Rattay R, Richardson NL, Felix H (2001) A model of the electrically excited cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes. Hear Res 153:43–63.

    Article  Google Scholar 

  77. Hausser M, Spruston N, Stuart G (2000) Diversity and dynamics of dendritic signaling. Science 290(5492):739–744, Oct 2000.

    Article  Google Scholar 

  78. Gilja V, Linderman MD, Santhanam G, Afshar A, Ryu SI, Meng TH, et al. (2006) Multiday electrophysiological recordings from freely behaving primates. Proc 28th Ann Int Conf IEEE EMBS, 2006, pp. 4387–4391.

    Google Scholar 

  79. Kim KH, Kim JK (2000) Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier. IEEE Trans Biomed Eng 47(10):1406–1411, Oct 2000.

    Article  Google Scholar 

  80. Kaiser JF (1990) On a simple algorithm to calculate the energy of a signal. In Proc IEEE Int Conf Acoustic Speech and Signal Processing pp. 381–384.

    Google Scholar 

  81. MaragosP, Kaiser JF, Quatieri TF. On amplitude and frequency demodulation using energy operators. IEEE Trans Signal Proc 41, No:4, April 1893.

    Google Scholar 

  82. Mukhopadhyay S, Ray GC (1998) A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans Biomed Eng 45, 180–187, Feb. 1998.

    Article  Google Scholar 

  83. Gibson S, Judy JW, Markovic D (2008) Comparison of Spike-sorting algorithms for future hardware implementation. To Appear in Proc 30th Ann Int Conf IEEE EMBS. 2008 Aug.

    Google Scholar 

  84. Simon W (1965) The real-time sorting of neuro-electric action potentials in multiple unit studies. Electroenceph Clin Neurophysiol. 18:192–195.

    Article  Google Scholar 

  85. Fukunaga K, Hostetler LD (1975) The estimation of the gradient of a density function, with application in pattern recognition. IEEE Trans Inf Theory 21:180–187.

    Article  Google Scholar 

  86. Cheng YZ (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799, Aug.

    Article  Google Scholar 

  87. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619, May 2002.

    Article  Google Scholar 

  88. Comaniciu D, Ramesh V, Meer P (2001) The variable bandwidth mean shift and data-driven scale selection. In: IEEE International Conference on Computer Vision, I: 438–445.

    Google Scholar 

  89. Hall P, Hui TC, Marron JC (1995) Improved variable window kernel estimates of probability densities. Ann Stat.23:1–10.

    Article  MATH  Google Scholar 

  90. Stuart MacKey R (xxxx) Bio-Medical Telemetry: Sensing and Transmitting Biological Information from Animals and Man. John Wiley & Sons, Inc., New York, August 1998.

    Google Scholar 

  91. Deutsch S (1976) A 15-electrode totally implanted time-multiplex telemetry unit. IEEE Trans. Commun 24, 1073–1078, Oct. 1976.

    Article  Google Scholar 

  92. Summers G (1970) Transducers for bioimplantable telemetry systems. IEEE IECI-17, 17: 144–150, Apr. 1970.

    Google Scholar 

  93. Meindl J (1977) Integrated electron devices in medicine. Int Electron Dev Meet 23: 1–1.

    Google Scholar 

  94. Ryan TG, Busacker JW, Hochban RA (1994) Pacemaker telemetry system, U.S Patent 5 350 411.

    Google Scholar 

  95. Troyk P, DeMichele G (2000) Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation. Proc. IEEE 25th EMBS Conference, vol.4, pp. 3376–3379, Sept. 2003.

    Google Scholar 

  96. Loftin SM, McClure KH (2006) Low-power, high-modulation-index amplifier for use in battery-powered device, U.S Patent 7 092 762.

    Google Scholar 

  97. Zierhofer CM (2003) Multichannel cochlear implant with neural response telemetry, U.S. Patent 6 600 955.

    Google Scholar 

  98. Zierhofer C, Hochmair-Desoyer I, Hochmair E (1995) Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans. Neural Syst Rehabil 3:112–116, Mar. 1995.

    Article  Google Scholar 

  99. Dong M, Zhang C, Wang Z, Li D (2004) A neuro-stimulus chip with telemetry unit for cochlear implant. IEEE Int Workshop Biomed Circ Syst, pp. S1/3/INV 9–12, Dec. 2004.

    Google Scholar 

  100. W. Liu, Vichienchom K, Clements M, DeMarco SC, Hughes C, McGucken E, Hymayun MS, de Juan E, Weiland JD, Greenberg R (2000) A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid-State Circ. 35(10):1487–1497, Oct. 2000.

    Article  Google Scholar 

  101. Ghovanloo M, Najafi K (2004) A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans Circ Syst. 51:2374–2383, Dec. 2004

    Google Scholar 

  102. Theogaraja L Wyatt J, Rizzo J, Drohan B, Markova M, Kelly S, Swider G, Raj M, Shire D, Gingerich M, Lowenstein J, Yomtov B (2006) Minimally invasive retinal prosthesis. IEEE ISSCC Digest of Technical Papers, pp. 54–55, Feb. 2006.

    Google Scholar 

  103. Zhou M, Liu W (2007) A non-coherent PSK receiver with interference-canceling for transcutaneous neural implants. ISSCC Digest of Technical Paper, pp. 156–157, Feb. 2007.

    Google Scholar 

  104. Humayun MS, Juan E De, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S (1999) Pattern electrical stimulation of the human retina. Vision Res 39(15): 2569–2576, July, 1999.

    Article  Google Scholar 

  105. Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, Juan E De (1999) Long term histological and electrophysiological results of an inactive epi-retinal electrode array implantation in dogs. Invest. Ophthalmol Vis Sci 40(9): 2073–2081, Aug. 1999.

    Google Scholar 

  106. Ko WH, Liang SP, Fung CDF (1977) Design of radio-frequency powered coils for implant instruments. Med Biol Eng Comput 15(6):634–640, Nov. 1977.

    Article  Google Scholar 

  107. Wang G, Liu W, Sivaprakasam M, Humayun MS, Weiland JD (2005) Power supply topologies for biphasic stimulation in inductively powered implants. IEEE ISCAS 3: 2743–2746.

    Google Scholar 

  108. Yang Z, Wang G, Liu W (2006) Analytical calculation of the selfresonant frequency of biomedical telemetry coils. Proc. 28th Ann. Int. Conf. IEEE EMBS, pp. 5880–5883, Sep. 2006.

    Google Scholar 

  109. Grover F (1962) Inductance Calculations: Working Formulas and Tables. Dover, New York.

    MATH  Google Scholar 

  110. Yang Z, Liu W, Basham E (2007) Inductor modeling in wireless links for implantable electronics. IEEE Trans Magn 43: 3851–3860, Oct. 2007.

    Article  Google Scholar 

  111. Ferreira J (1992) Analytical computation of ac resistance of round and rectangular litz wire windings. Proc Inst Elect Eng Part B 139(1): 21–25, Jan. 1992.

    Google Scholar 

  112. Troyk P, DeMichele G (2003) Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation. Proc IEEE 25th EMBS Conference, vol. 4, pp. 3376–3379, Sept. 2003.

    Google Scholar 

  113. Zierhofer C, Hochmair-Desoyer I, Hochmair E (1995) Electronic design of a cochlear implant for multichannel high-rate pulastile stimulation strategies. IEEE Trans. Neural Syst Rehabil 3:112–116, Mar. 1995.

    Article  Google Scholar 

  114. Liu W, et al. (2000) A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J Solid-State Circ. 35(10): 1487–1497, Oct. 2000.

    Article  Google Scholar 

  115. Ghovanloo M, Najafi K (2004) A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans Circ Syst 51:2374–2383, Dec. 2004.

    Article  Google Scholar 

  116. Weiland JD, et al. (2005) Progress towards a high-resolution retinal prosthesis. Proc. IEEE 27th EMBC Conference, pp. 7373–7375, Sep. 2005.

    Google Scholar 

  117. Zhou M, et al. (2006) A transcutaneous data telemetry system tolerant to power telemetry interference. Proc. IEEE 28th EMBS Conference, pp. 5884–5887, Sep. 2006.

    Google Scholar 

  118. Liu W, Humayun MS (2004) Retinal prosthesis. ISSCC Digest of Technical Paper, pp. 218–219, Feb. 2004.

    Google Scholar 

  119. Wang G (2006) Wireless power and data telemetry for retinal prosthesis. Ph.D. dissertation, University of California, Santa Cruz, EE Dept., CA, USA, Mar. 2006.

    Google Scholar 

  120. Zhou M, Liu W (2007) A non-coherent PSK receiver with interference-canceling for transcutaneous neural implants. ISSCC Digest of Technical Papers, pp. 156–157, Feb. 2007.

    Google Scholar 

  121. Vaughan RG, Scott NL, White DR (1991) The theory of bandpass sampling. IEEE Trans. Signal Process 39: 1973–1984, Sep. 1991.

    Article  Google Scholar 

  122. Razavi B (1995) Principles of Data Conversion System design. IEEE Press, New York.

    Google Scholar 

  123. Gray PR, Hurst PJ, Lewis SH, Meyer RG (2001) Analysis and Design of Analog Integrated Circuit. Wiley, New York.

    Google Scholar 

  124. Federal communications commission, http://www.fcc.gov

  125. Deparis N, Loyez C, Rolland N, Rolland P-A (2006) Pulse generator for UWB communication and radar applications with PPM and time hopping possibilities. ISCAS 2006, pp. 661–665, 2006.

    Google Scholar 

  126. Saha P, Sasaki N, Kikkawa T (2006) A Single-Chip Gaussian Monocycle Pulse Transmitter Using 0.18 /spl m/m CMOS Technology for Intra/Interchip UWB Communication. IEEE VLSI Symposium on Circuits, June 15–17, 2006, pp. 204–205.

    Google Scholar 

  127. Jung B, Tseng YH, Harvey J, Harjani R (2005) Pulse generator design for UWB IR communication systems. IEEE Int Symp Circ Syst (ISCAS ‘05.), 5:4381–4384, 23–26 May 2005.

    Article  Google Scholar 

  128. Bennett WR, Davey JR (1965) Data Transmission. McGraw-Hill, New York.

    Google Scholar 

  129. Wentzloff DD, Chandrakasan AP (2006) Gaussian Pulse Generators for Subbanded Ultra-Wideband Trasnmitters. IEEE Trans. Microw Theor Tech 54: 1647–1655, Apr. 2006.

    Article  Google Scholar 

  130. Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng T, Shenoy K (2007) HermesB: A continuous neural recording system for freely behaving primates. IEEE Tran Biomed Eng 54(11): 2037–2050, Nov. 2007.

    Article  Google Scholar 

  131. Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27: 487–501, July 2004.

    Article  Google Scholar 

  132. Borisoff JF, McPhail LT, Saunders JTW, Birch GE, Ramer MS (2006) Detection and classification of sensory information from acute spinal cord recordings. IEEE Trans. Biomed Eng 53(8): 1715–1719, Aug. 2006.

    Google Scholar 

  133. Jackson A, Moritz CT, Mavoori J, Lucas TH, Fetz EE (2006) The Neurochip BCI: Towards a neural prosthesis for upper limb function. IEEE Trans. Neural Syst Rehabil Eng 14(2):187–190, June 2006.

    Google Scholar 

  134. Strange KD, Hoffer JA (1999) Restoration of use of paralyzed limb muscles using sensory nerve signals for state control of FES-assisted walking. IEEE Trans. Rehabil Eng 7(3), Sep. 1999.

    Google Scholar 

  135. Wenzel BJ, Boggs JW, Gustafson KJ, Grill WM (2005) Detecting the onset of hyper-reflexive bladder contractions from the electrical activity of the pudendal nerve. IEEE Trans. Neural Syst Rehabil Eng 13(3), Sep. 2005.

    Google Scholar 

  136. Hansen J, Borau A, Rodriguez A, Vidal J, Sinkjaer T, Rijkhoff NJM (2007) Urethral sphincter EMG as event detector for neurogenic detrusor overactivity. IEEE Trans. Biomed Eng 54(7), July 2007.

    Google Scholar 

  137. DiMarco AF (2001) Neural prostheses in the respiratory system. J. Rehabil Res Dev 38(6), Nov./Dec. 2001.

    Google Scholar 

  138. Mangold S, Keller T, Curt A, Dietz V (2005) Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord 43:1–13, 2005.

    Google Scholar 

  139. Aziz JNY, Genov R, Bardakjian BL, Derchansky M, Carlen PL (2007) Brain-silicon interface for high-resolution in vitro neural recording. IEEE Trans. Biomed Circ Syst 1(1): 56–62, Mar. 2007.

    Article  Google Scholar 

  140. Perelman Y, Ginosar R (2007) An integrated system for multichannel neuronal recording with Spike/LFP separation, integrated A/D conversion and threshold detection. IEEE Trans. Biomed Eng 54(1): 130–137, Jan. 2007.

    Article  Google Scholar 

  141. Cheney D, Goh A, Xu J, Gugel K, Harris JG, Sanchez JC, Principe JC (2007) Wireless, in vivo neural recording using a custom integrated bioamplifier and the pico system. CNE '07. 3rd International IEEE/EMBS Conference on Neural Eng, 2007, pp. 19–22, 2–5 May 2007.

    Google Scholar 

  142. Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid-State Circ, 42(1): 123–133, Jan. 2007.

    Article  Google Scholar 

  143. Sodagar AM, Wise KD, Najafi K (2007) A fully integrated mixed-signal neural processor for implantable multichannel cortical recording. IEEE Trans. Biomed Eng 54(6): 1075–1088, June 2007.

    Article  Google Scholar 

  144. Olsson RH III, Wise KD (2005) A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J Solid-State Circ 40: 2796–2804.

    Article  Google Scholar 

  145. Gosselin B, Ayoub AE, Sawan M (2007) A mixed-signal multi-chip neural recording interface with bandwidth reduction. In The 2007 IEEE Biomedical Circuits and Systems Conference (BIOCAS), pp. 49–52.

    Google Scholar 

  146. Chae M, Liu W, Yang Z, Chen T, Kim J, Sivaprakasam M, Yuce M (2008) A 128-channel 6mW wireless neural recording IC with on-the-fly spike sorting and UWB transmitter. In Dig. Tech. Papers 2008 IEEE Int. Solid-State Circ Conf., San Francisco, CA, Feb. 3–7, 2008, pp. 146–147.

    Google Scholar 

  147. Chae MS, Liu W, Sivaprakasam M (2008) Design optimization for integrated neural recording systems. IEEE J Solid-State Circuits 43(9): 1931–1939, Sept. 2008.

    Article  Google Scholar 

  148. Chimeno MF, Pallas-Areny R (2000) A comprehensive model for power line interference in biopotential measurements. IEEE Trans Inst Meas 49(3): 535–540, June 2000.

    Article  Google Scholar 

  149. Chae M, Kim J, Liu W (2008) Fully-differential self-biased bio-potential amplifier. Electron Lett 44(24): 1390–1391, November 20 2008.

    Article  Google Scholar 

  150. Scott MD, Boser BE, Pister SJ (2003) An ultralow-energy ADC for Smart Dust. IEEE Journal of Solid-State Circuits, 38(7): 1123–1129, July 2003.

    Article  Google Scholar 

  151. Linderman MD, Gilja V, Santhanam G, Afshar A, Ryu SI, Meng TH, Shenoy KV (2006) Neural recording stability of chronic electrode. Proc. 28th Ann. Int. Conf. IEEE EMBS, pp. 4387–4391, 2006.

    Google Scholar 

  152. Hazan L, Zugaro M, Buzsaki G (2006) Klusters, neuroscope, ndmanager: A free software suite for neurophysiological data processing and visualization. J Neurosci Methods, 155(2):207–216, Sep 2006.

    Article  Google Scholar 

  153. Maragos P, Kaiser JF, Quatieri T. On amplitude and frequency demodulation using energy Operators. IEEE Trans Signal Process, April 1993.

    Google Scholar 

  154. Kim KH, Kim JK (2000) Neural spike sorting under nearly 0-db signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier. IEEE Trans Biomed Eng, 47(10):1406–1411, Oct. 2000.

    Article  Google Scholar 

  155. Yang Z, Chen T, Liu W (2008) Neuron signature based spike feature extraction algorithm for on-chip implementation. Proc. 30th Ann. Int. Conf. IEEE EMBS, pp. 1716–1719, August 2008.

    Google Scholar 

  156. Yang Z, Zhao Q, Liu W (2008) Spike feature extraction using informative samples. Advances in Neural Information Processing Systems (NIPS), MIT Press, Cambridge, MA. December 2008.

    Google Scholar 

  157. Chen T, Yang Z, Liu W, Chen L (2008) NEUSORT2.0: A multiple-channel neural signal processor with systolic array buffer and channel-interleaving processing schedule. Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 5029–5032, 20–25 Aug. 2008.

    Google Scholar 

  158. Gharpurey R, Kinget P (2008) Ultra Wideband : Circuits, Transceivers and Systems. Springer, New York.

    Google Scholar 

  159. Yuce MR, Liu W, Chae MS, Kim JS (2007) A wideband telemetry unit for multi-channel neural recording systems. Ultra-Wideband, 2007. IEEE International Conference on ICUWB 2007, pp. 612–617, 24–26 Sept. 2007.

    Google Scholar 

  160. Charles C (2008) An implantable I-UWB transceiver architecture with power carrier synchronization. Circuits and Systems, 2008. IEEE International Symposium on ISCAS, 2008, pp. 1970–1973.

    Google Scholar 

  161. Jung B, Tseng YH, Harvey J, Harjani R (2005) Pulse generator design for UWB IR communication systems. Circuits and Systems, 2005. IEEE International Symposium on ISCAS 2005, pp. 4381–4384 Vol. 5, 23–26 May 2005.

    Google Scholar 

  162. Webster JG (ed.) (1998) Medical Instrumentation Application and Design. John Wiley & Sons, Inc., New York.

    Google Scholar 

  163. Huhta JC, Webster JG (1973) 60-Hz Interference in electrocardiography. IEEE Trans Biomed Eng, Vol. BME-20, pp. 91–101.

    Article  Google Scholar 

  164. Thakor NV, Webster JG (1980) Ground-free ECG recording with two electrodes. IEEE Transactions on Biomedical Engineering, Vol. BME-27, No.12, pp. 699–704, Dec. 1980.

    Article  Google Scholar 

  165. Webster JG (1984) Reducing motion artifacts and interference in biopotential recording. IEEE Transactions on Biomedical Engineering, Vol. BME-31, No.12, pp. 823–826, Dec. 1984.

    Article  Google Scholar 

  166. Piipponen KVT, Sepponen R, Eskelinen P (2007) A biosignal instrumentation system using capacitive coupling for power and signal isolation. IEEE Transactions on Biomedical Engineering, Vol. 54, No. 10, pp. 1822–1828, Oct. 2007.

    Article  Google Scholar 

  167. To appear in Ph.D. dissertation of Chae M, Univ. of California, Santa Cruz, EE Department., CA, USA.

    Google Scholar 

  168. Weiland JD, Humayun MS (2008) Visual Prosthesis. Proceedings of the IEEE, Vol. 96, No.7, pp. 1076–1084, July 2008.

    Article  Google Scholar 

  169. Liu W, Humayun MS (2004) Retinal prosthesis. Solid-State Circuits Conference, 2004. Digest of Technical Papers. IEEE International ISSCC. 2004, Vol. 1, pp. 218–219, 15–19 Feb. 2004.

    Google Scholar 

  170. Ortmanns M, Rocke A, Gehrke M, Tiedtke HJ (2007) A 232-channel epiretinal stimulator ASIC. IEEE Journal of Solid-State Circuits, Vol.42, No.12, pp. 2946–2959, Dec. 2007.

    Article  Google Scholar 

  171. Rothermel A, Wieczorek V, Liu L, Stett A, Gerhardt M, Harscher A, Kibbel S (2008) A 1600-pixel Subretinal Chip with DC-free Terminals and ±2 V Supply Optimized for Long Lifetime and High Stimulation Efficiency. Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp. 144–602, 3–7 Feb. 2008.

    Google Scholar 

  172. Yanai D, Weiland JD, Mahadevappa M, Greenberg RJ, Fine I, Humayun MS (2007) Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol, 143(5):820–827, May 2007. Epub 2007 Mar 23.

    Article  Google Scholar 

  173. Zhou M, Liu W (2007) A Non-Coherent PSK Receiver with Interference-Canceling for Transcutaneous Neural Implants. Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, pp. 156–593, 11–15 Feb. 2007.

    Google Scholar 

Download references

Acknowledgment

The authors greatly thank Hyunchul Kim for helping in editing, Jungsuk Kim for providing materials on DPSK data telemetry, Bin Liang for helping in chip layout, Linh Hoang for CAD tool supports, Kuanfu Chen for providing data on retinal prostheses, Lihsien Wu for providing data for power telemetry, Eric Basham for experimental setup, Tungchien Chen for works and data on signal processing, Dr. Mingcui Zhou for materials on data telemetry, and Dr. Mehmet R. Yuce for his works related with UWB telemetry. This study was partially supported by grants from NSF, NSF-ERC, and DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Sung Chae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chae, M.S., Yang, Z., Liu, W. (2009). Microelectronics of Recording, Stimulation, and Wireless Telemetry for Neuroprosthetics: Design and Optimization. In: Zhou, D., Greenbaum, E. (eds) Implantable Neural Prostheses 2. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98120-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-98120-8_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98119-2

  • Online ISBN: 978-0-387-98120-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics