Skip to main content

Translational Bypassing – Peptidyl-tRNA Re-pairing at Non-overlapping Sites

  • Chapter
  • First Online:

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 24))

Abstract

Ribosomal bypassing can lead to the translational fusion of non-contiguous ORFs. It involves dissociation of codon:anticodon pairing in the ribosomal P-site followed by mRNA slippage and re-pairing of the retained tRNA anticodon to mRNA at a non-overlapping codon. It is frame independent. The most studied case involves the bypassing of 50 non-coding nucleotides between codons 46 and 47 of phage T4 gene 60 where half the translating ribosomes successfully accomplish the feat. A nascent peptide signal encoded 5 of the start of the coding gap facilitates the initial codon:anticodon dissociation. An mRNA structure forms in the ribosomal A-site. Only when sequence participating in this structure has passed the ribosomal P-site does the potential for anticodon re-pairing to mRNA at a matched codon arise. After such re-pairing, normal decoding of the A-site codon mediates resumption of standard translation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamski FM, Atkins JF, Gesteland RF (1996) Ribosomal protein L9 interactions with 23S rRNA: The use of translational bypass assay to study the effect of amino acid substitutions. J Mol Biol 261:357–371

    Article  PubMed  CAS  Google Scholar 

  • Baranov PV, Gesteland RF, Atkins JF (2002) Release factor 2 frameshifting sites in different bacteria. EMBO Reports 3:373–377

    Article  PubMed  CAS  Google Scholar 

  • Berk V, Cate JH (2007) Insights into protein biosynthesis from structures of bacterial ribosomes. Curr Opin Struct Biol 17:302–309

    Article  PubMed  CAS  Google Scholar 

  • Bucklin DJ, Wills NM, Gesteland RF, Atkins JF (2005) P-site pairing subtleties revealed by the effects of different tRNAs on programmed translational bypassing where anticodon re-pairing to mRNA is separated from dissociation. J Mol Biol 345:39–49

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Bjerknes M, Kumar R, Jay E (1994) Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucl Acids Res 22:4953–4957

    Article  PubMed  CAS  Google Scholar 

  • Chittum HS, Lane WS, Carlson BA, Roller PP, Lung, F-DT, Lee BJ, Hatfield DL (1998) Rabbit β-globin is extended beyond its UGA codon by multiple suppressions and translational reading gaps. Biochemistry 37:10866–10870

    Article  PubMed  CAS  Google Scholar 

  • Choi KM, Atkins JF, Gesteland RF, Brimacombe R (1998) Flexibility of the nascent polypeptide chain within the ribosome – Contacts from the peptide N-terminus to a specific region of the 30S subunit. Eur J Biochem 255:409–413

    Article  PubMed  CAS  Google Scholar 

  • Devaraj A, Shoji S, Holbrook E.D, Fredrick K (2009) A role for the 30S subunit E site in maintenance of the translational reading frame. RNA 15:255–265

    Article  PubMed  CAS  Google Scholar 

  • Gallant J, Bonthuis P, Lindsley D (2003) Evidence that the bypassing ribosome travels through the coding gap. Proc Natl Acad Sci USA 100:13430–13435

    Article  PubMed  CAS  Google Scholar 

  • Gallant J, Bonthuis P, Lindsley D, Cabellon J, Gill G, Heaton K, Kelley-Clarke B, MacDonald L, Mercer S, Vu H, Worsley A (2004) On the role of the starved codon and the takeoff site in ribosome bypassing in Escherichia coli. J Mol Biol 342:713–724

    Article  PubMed  CAS  Google Scholar 

  • Gallant JA, Lindsley D (1998) Ribosomes can slide over and beyond “hungry” codons, resuming protein chain elongation many nucleotides downstream. Proc Natl Acad Sci USA 95:13771–13776

    Article  PubMed  CAS  Google Scholar 

  • Graifer DM, Babkina GT, Matasova NB, Vladimirov SN, Karpova GG, Vlassov VV (1989) Structural arrangement of tRNA binding sites on Escherichia coli ribosomes, as revealed from data on affinity labelling with photoreactive tRNA derivatives. Biochim Biophys Acta 1008:146–156

    Article  PubMed  CAS  Google Scholar 

  • Herbst KL, Nichols LM, Gesteland RF, Weiss RB (1994) A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60 from bacteriophage T4. Proc Nat. Acad Sci USA 91:12525–12529

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ, Atkins JF, Gesteland RF (1999) Mutations which alter the elbow region of \({\rm{tRNA}}_{\rm{2}}^{{\rm{Gly}}}\) \({\rm{tRNA}}_{\rm{2}}^{{\rm{Gly}}}\) reduce T4 gene 60 translational bypassing efficiency. EMBO J 18:2886–2896

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ, Gesteland RF, Atkins JF (2000) One protein from two open reading frames: Mechanism of a 50nt translational bypass. EMBO J 19:2671–2680

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ, Nelson CC, Wills NM, Gesteland RF, Atkins JF (2001a) Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA. J Mol Biol 309:1029–1048

    Google Scholar 

  • Herr AJ, Wills NM, Nelson CC, Gesteland RF, Atkins JF (2001b) Drop-off during ribosome hopping. J Mol Biol 311:445–452

    Google Scholar 

  • Herr AJ, Wills NW, Nelson CC, Gesteland RF, Atkins JF (2004) Factors that influence selection of coding resumption sites in translational bypassing. J Biol Chem 279:11081–11087

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DW, Davies C, Gerchman SE, Kycia JH, Porter SJ, White SW, Ramakrishnan V (1994) Crystal structure of prokaryotic ribosomal protein L9: A bi-lobed RNA-binding protein. EMBO J 13:205–212

    PubMed  CAS  Google Scholar 

  • Hoffman DW, Cameron CS, Davies C, White SW, Ramakrishnan V (1996) Ribosomal protein L9: A structure determination by the combined use of X-ray crystallography and NMR spectroscopy. J Mol Biol 264:1058–1071

    Article  PubMed  CAS  Google Scholar 

  • Huang WM, Ao S, Casjens S, Orlandi R, Zeikus R, Weiss R, Winge D, Fang M (1988) A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239:1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Jenner L, Rees B, Yusupov, M, Yusupova G (2007) Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography. EMBO Reports 8:846–850

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Zhao Q, de Valdivia EIG, Ardell DH, Stenström M, Isaksson LA (2006) Influences on gene expression in vivo by a Shine-Dalgarno sequence. Mol Microbiol 60:480–492

    Article  PubMed  CAS  Google Scholar 

  • Kane JF, Violand BN, Curran DF, Staten NR, Duffin KL, Bogosian, G. (1992) Novel in-frame two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli. Nucl Acids Res 24:6707–6712

    Article  Google Scholar 

  • Korostelev A., Ermolenko DN, Noller HF (2008) Structural dynamics of the ribosome. Curr Opin Chem Biol 12:674–683

    Article  Google Scholar 

  • Larsen B, Peden J, Matsufuji S, Matsufuji T, Brady K, Maldonado R, Wills NM, Fayet O, Atkins JF, Gesteland RF (1995) Upstream regulators for recoding Biochem. Cell Biol 73:1123–1129

    CAS  Google Scholar 

  • Larsen, B, Wills NM, Gesteland RF, Atkins JF (1994) rRNA-mRNA base pairing stimulates a programmed –1 ribosomal frameshift. J Bacteriol 176:6842–6851

    PubMed  CAS  Google Scholar 

  • Lieberman KR, Firpo MA, Herr AJ, Nguyenle T, Atkins JF, Gesteland RF, Noller HF (2000) The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit. J Mol Biol 297:1129–1143

    Article  PubMed  CAS  Google Scholar 

  • Lindsley D, Gallant J (1993) On the directional specificity of ribosome frameshifting at a “hungry” codon. Proc Natl Acad Sci USA 90:5469–5473

    Article  PubMed  CAS  Google Scholar 

  • Lindsley D, Gallant J, Doneanu C, Bonthuis P, Caldwell S, Fontelera A (2005) Spontaneous ribosome bypassing in growing cells. J Mol Biol 349:261–272

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Herr AJ (1998) Efficiency of T4 gene 60 translational bypassing. J Bacteriol 180:1822–1830

    PubMed  CAS  Google Scholar 

  • Manch-Citron JN, Dey A, Schneider R, Nguyebn NY (1999) The translational hop junction and the 5 transcriptional start site for the Prevotella loescheii adhesion encoded by plaA. Curr Microbiol 38:22–26

    Article  PubMed  CAS  Google Scholar 

  • Márquez V, Wilson DN, Tate WP, Triana-Alonso F, Nierhaus KH (2004) Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Cell 118:45–55

    Article  PubMed  Google Scholar 

  • Murgola EJ, Pagel FT (1980) Codon recognition by glycine transfer RNAs of Escherichia coli in vivo. J Mol Biol 138:833–844

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Gesteland RF, Atkins JF (1989) tRNA hopping: enhancement by an expanded anticodon. EMBO J 8:4315–4323

    PubMed  Google Scholar 

  • O’Mahony DJ, Mims BH, Thompson S, Murgola EJ, Atkins JF (1989) Glycine tRNA mutants with normal anticodon loop size cause –1 frameshifting. Proc Natl Acad Sci USA 86:7979–7983

    Article  PubMed  Google Scholar 

  • Pagel FT, Tuohy TMF, Atkins JF, Murgola EJ (1992) Doublet translocation at GGA is mediated directly by mutant \({\rm{tRNA}}_{\rm{2}}^{{\rm{Gly}}}\) 2. J Bacteriol 174:4179–4182

    PubMed  CAS  Google Scholar 

  • Riyasaty S, Atkins JF (1968) External suppression of a frameshift mutant in Salmonella. J Mol Biol 34:541–557

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Fricke R, Wintermeyer W (1994) Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 33:12267–12275

    Article  PubMed  CAS  Google Scholar 

  • Samaha RR, Green R, Noller HF (1995) A base pair between tRNA and 23 S rRNA in the peptidyl transferase center of the ribosome. Nature 377:309–314

    Article  PubMed  CAS  Google Scholar 

  • Sanders CL, Curran JF (2007) Genetic analysis of the E site during RF2 programmed frameshifting. RNA 13:1483–1491

    Article  PubMed  CAS  Google Scholar 

  • Schuette JC, Murphy FV, Kelley AC, Weir JR, Giesebrecht J, Connell SR, Loerke J, Mielke T, Zhang W, Penczek PA, Ramakrishnan V, Spahn CM (2009) GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J 28:755–765

    Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structure of the bacterial ribosome at 3.5 Å resolution. Science 310:827–834

    Article  PubMed  CAS  Google Scholar 

  • Spahn CMT, Blaha, G., Agrawal RK, Penczek P, Grassucci RA, Trieber CA, Connell SR, Taylor DE, Nierhaus KH, Frank J (2001) Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol Cell 7:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Tsalkova T, Odom OW, Kramer G, Hardesty B (1998) Different conformations of nascent peptides on ribosomes. J Mol Biol 278:713–723

    Article  PubMed  CAS  Google Scholar 

  • Tuohy TMF, Kidd T, Gesteland RF, Atkins JF (1994) Uninterrupted translation through putative 12-nucleotide coding gap in sequence of carA: business as usual. J Bacteriol 176:265–267

    PubMed  CAS  Google Scholar 

  • Valle M, Zavialov A, Sengupta J, Rawat U, Ehrenberg M, Frank J (2003) Locking and unlocking of ribosomal motions. Cell 114:123–134

    Article  PubMed  CAS  Google Scholar 

  • Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF (1988) Reading frame switch caused by base-pair formation between the 3’ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J 7:1503–1507

    PubMed  CAS  Google Scholar 

  • Weiss RB, Dunn DM, Atkins JF, Gesteland RF (1987) Slippery runs, shifty stops, backward steps, and forward hops: −2,−1,+1, +2, +5 and +6 ribosomal frameshifting. Cold Spring Harbor Symp. Quant Biol 52:687–693

    Article  PubMed  CAS  Google Scholar 

  • Weiss RB, Huang WM, Dunn DM (1990) A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell 62:117–126

    Article  PubMed  CAS  Google Scholar 

  • Wills NM, Ingram JA, Gesteland RF, Atkins JF (1997) Reported translational bypass in a trpR’-lacZ’ fusion is accounted for by unusual initiation and +1 frameshifting. J Mol Biol 271:491–498

    Article  PubMed  CAS  Google Scholar 

  • Wills NM, O’Connor M, Nelson CC, Rettberg CC, Huang WM, Gesteland RF, Atkins JF (2008) Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA. EMBO J 27:2533–2544

    Article  PubMed  CAS  Google Scholar 

  • Wilson DN, Nierhaus KH (2006) The E-site story: the importance of maintaining two tRNAs on the ribosome during protein synthesis. Cell Mol Life Sci 63:2725–2737

    Article  PubMed  CAS  Google Scholar 

  • Yusupov M, Yusupova G, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896

    Article  PubMed  CAS  Google Scholar 

  • Yusupova G, Jenner L, Rees B, Moras D and Yusupov M (2006) Structural basis for messenger RNA movement on the ribosome. Nature 444:391–394

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant ROI GM079523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma M. Wills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wills, N.M. (2010). Translational Bypassing – Peptidyl-tRNA Re-pairing at Non-overlapping Sites. In: Atkins, J., Gesteland, R. (eds) Recoding: Expansion of Decoding Rules Enriches Gene Expression. Nucleic Acids and Molecular Biology, vol 24. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89382-2_17

Download citation

Publish with us

Policies and ethics