Skip to main content

Astrocyte control of blood flow

  • Chapter
  • First Online:
Book cover Astrocytes in (Patho)Physiology of the Nervous System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid

ATP:

Adenosine 5′-triphosphate

CBF:

Cerebral blood flow

COX:

Cyclooxygenase

CSD:

Cortical spreading depression

CYP450:

Cytochrome P450

EET:

Epoxyeicosatrienoic acid

fMRI:

Functional magnetic resonance imaging

GABA:

Gamma-aminobutyric acid

GFAP:

Glial fibrillary acidic protein

20-HETE:

20-Hydroxyeicosatetraenoic acid

IOS:

Intrinsic optical signal

IP3 :

1,4,5-Inositol-trisphosphate

KO:

Knockout

L-NAME:

N(G)-Nitro-l-arginine methyl ester

mGluR:

Metabotropic glutamate receptor

NADH:

Reduced β-nicotinamide adenine dinucleotide

NE:

Norepinephrine

NO:

Nitric oxide

NOS:

NO synthase

PGE2 :

Prostaglandin E2

PLA2 :

Phospholipase A2

SMCs:

Smooth muscle cells

t-ACPD:

(1S, 3R)-1-Aminocyclopentane-1, 3-dicarboxylic acid

VGCCs:

Voltage-gated calcium channels

VRACs:

Volume-regulated anion channels

References

  • Alborch E, Salom JB, Torregrosa G (1995) Calcium channels in cerebral arteries. Pharmacol Ther 68:1–34

    PubMed  CAS  Google Scholar 

  • Alkayed NJ, Birks EK, Hudetz AG, Roman RJ, Henderson L, Harder DR (1996) Inhibition of brain P-450 arachidonic acid epoxygenase decreases baseline cerebral blood flow. Am J Physiol 271:H1541–H1546

    PubMed  CAS  Google Scholar 

  • Alkayed NJ, Birks EK, Narayanan J, Petrie KA, Kohler-Cabot AE, Harder DR (1997) Role of P-450 arachidonic acid epoxygenase in the response of cerebral blood flow to glutamate in rats. Stroke 28:1066–1072

    PubMed  CAS  Google Scholar 

  • Amiry-Moghaddam M, Ottersen OP (2004) The molecular basis of water transport in the brain. Nat Rev Neurosci 12:991–1001

    Google Scholar 

  • Amruthesh SC, Boerschel MF, McKinney JS, Willoughby KA, Ellis EF (1993) Metabolism of arachidonic acid to epoxyeicosatrienoic acids, hydroxyeicosatetraenoic acids, and prostaglandins in cultured rat hippocampal astrocytes. J Neurochem 61:150–159

    PubMed  CAS  Google Scholar 

  • Ances BM, Buerk DG, Greenberg JH, Detre JA (2001) Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats. Neurosci Lett 306:106–110

    PubMed  CAS  Google Scholar 

  • Anderson S, Brismar T, Hansson E (1995) Effect of external K+,. Ca2+, and Ba2+ on membrane potential and ionic conductance in rat astrocytes Cell Mol Neurobiol 15:439–450

    PubMed  CAS  Google Scholar 

  • Andrew RD, Labron MW, Boehnke SE, Carnduff L, Kirov SA (2007) Physiological evidence that pyramidal neurons lack functional water channels. Cereb Cortex 17:787–802

    PubMed  Google Scholar 

  • Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2 + elevations in astrocytes in hippocampal slices. J Neurosci 22:2443–2450

    PubMed  CAS  Google Scholar 

  • Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA 99:9840–9845

    PubMed  CAS  Google Scholar 

  • Balazs R, Miller S, Romano C, de Vries A, Chun Y, Cotman CW (1997) Metabotropic glutamate receptor mGluR5 in astrocytes: Pharmacological properties and agonist regulation. J Neurochem 69:151–163

    PubMed  CAS  Google Scholar 

  • Balazsi G, Cornell-Bell AH, Moss F (2003) Increased phase synchronization of spontaneous calcium oscillations in epileptic human versus normal rat astrocyte cultures. Chaos 13:515–518

    PubMed  CAS  Google Scholar 

  • Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323

    PubMed  Google Scholar 

  • Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 18:7189–7199

    PubMed  CAS  Google Scholar 

  • Basarsky TA, Feighan D, MacVicar BA (1999) Glutamate release through volume-activated channels during spreading depression. J Neurosci 19:6439–6445

    PubMed  CAS  Google Scholar 

  • Benyo Z, Gorlach C, Wahl M (1998a) Involvement of thromboxane A2 in the mediation of the contractile effect induced by inhibition of nitric oxide synthesis in isolated rat middle cerebral arteries. J Cereb Blood Flow Metab 18:616–618

    CAS  Google Scholar 

  • Benyo Z, Gorlach C, Wahl M (1998b) Role of nitric oxide and thromboxane in the maintenance of cerebrovascular tone. Kidney Int Suppl 67:S218–220

    CAS  Google Scholar 

  • Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L (2003) Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48

    PubMed  CAS  Google Scholar 

  • Brennan AM, Connor JA, Shuttleworth CW (2006) NAD(P)H fluorescence transients after synaptic activity in brain slices: Predominant role of mitochondrial function. J Cereb Blood Flow Metab 26:1389–1406

    PubMed  CAS  Google Scholar 

  • Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271

    PubMed  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    PubMed  CAS  Google Scholar 

  • Calka J, Wolf G (2003) An ultrastructural demonstration of NADPH-diaphorase/nitric oxide synthase activity in the rat striatal astroglia. Folia Morphol (Warsz) 62:251–253

    Google Scholar 

  • Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E (2004) Cortical GABA interneurons in neurovascular coupling: Relays for subcortical vasoactive pathways. J Neurosci 24:8940–8949

    PubMed  CAS  Google Scholar 

  • Chuquet J, Hollender L, Nimchinsky EA (2007) High-resolution in vivo imaging of the neurovascular unit during spreading depression. J Neurosci 27:4036–4044

    PubMed  CAS  Google Scholar 

  • Cohen Z, Molinatti G, Hamel E (1997) Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab 17:894–904

    PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science 247:470–473

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95:15735–15740

    PubMed  CAS  Google Scholar 

  • Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440

    PubMed  CAS  Google Scholar 

  • Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870–1877

    PubMed  CAS  Google Scholar 

  • Devor A, Ulbert I, Dunn AK, Narayanan SN, Jones SR, Andermann ML, Boas DA, Dale AM (2005) Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc Natl Acad Sci USA 102:3822–3827

    PubMed  CAS  Google Scholar 

  • Duan S, Neary JT (2006) P2X(7) receptors: Properties and relevance to CNS function. Glia 54:738–746

    PubMed  Google Scholar 

  • Duffy S, MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci 15:5535–5550

    PubMed  CAS  Google Scholar 

  • Ellis EF, Wei EP, Cockrell CS, Choi S, Kontos HA (1983) The effect of PGF2 alpha on in vivo cerebral arteriolar diameter in cats and rats. Prostaglandins 26:917–923

    PubMed  CAS  Google Scholar 

  • Ellis EF, Police RJ, Yancey L, McKinney JS, Amruthesh SC (1990) Dilation of cerebral arterioles by cytochrome P-450 metabolites of arachidonic acid. Am J Physiol 259:H1171–H1177

    PubMed  CAS  Google Scholar 

  • Faraci FM (1989) Effects of endothelin and vasopressin on cerebral blood vessels. Am J Physiol 257:H799–H803

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Yang HC, Rosenberger TA, Horrocks LA (1997) Phospholipase A2 and its role in brain tissue. J Neurochem 69:889–901

    PubMed  CAS  Google Scholar 

  • Favaloro JL, Andrews KL, McPherson GA (2003) Novel imidazoline compounds that inhibit Kir-mediated vasorelaxation in rat middle cerebral artery. Naunyn Schmiedebergs Arch Pharmacol 367:397–405

    PubMed  CAS  Google Scholar 

  • Fellows LK, Boutelle MG, Fillenz M (1993) Physiological stimulation increases nonoxidative glucose metabolism in the brain of the freely moving rat. J Neurochem 60:1258–1263

    PubMed  CAS  Google Scholar 

  • Filosa JA, Bonev AD, Nelson MT (2004) Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res 95:e73–81

    PubMed  CAS  Google Scholar 

  • Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9:1397–1403

    PubMed  CAS  Google Scholar 

  • Fischer G, Kettenmann H (1985) Cultured astrocytes form a syncytium after maturation. Exp Cell Res 159:273–279

    PubMed  CAS  Google Scholar 

  • Fleming I (2001) Cytochrome p450 and vascular homeostasis. Circ Res 89:753–762

    PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144

    PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    PubMed  CAS  Google Scholar 

  • Gebremedhin D, Ma YH, Falck JR, Roman RJ, VanRollins M, Harder DR (1992) Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am J Physiol 263:H519–H525

    PubMed  CAS  Google Scholar 

  • Gebremedhin D, Lange AR, Lowry TF, Taheri MR, Birks EK, Hudetz AG, Narayanan J, Falck JR, Okamoto H, Roman RJ, Nithipatikom K, Campbell WB, Harder DR (2000) Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ Res 87:60–65

    PubMed  CAS  Google Scholar 

  • Gebremedhin D, Yamaura K, Zhang C, Bylund J, Koehler RC, Harder DR (2003) Metabotropic glutamate receptor activation enhances the activities of two types of Ca2 + -activated k + channels in rat hippocampal astrocytes. J Neurosci 23:1678–1687

    PubMed  CAS  Google Scholar 

  • Gobel W, Kampa BM, Helmchen F (2007) Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods 4:73–79

    PubMed  Google Scholar 

  • Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8:1078–1086

    PubMed  CAS  Google Scholar 

  • Gurden H, Uchida N, Mainen ZF (2006) Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake. Neuron 52:335–345

    PubMed  CAS  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    PubMed  CAS  Google Scholar 

  • Haber M, Zhou L, Murai KK (2006) Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26:8881–8891

    PubMed  CAS  Google Scholar 

  • Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, Kwong KK, Cutrer FM, Rosen BR, Tootell RB, Sorensen AG, Moskowitz MA (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 98:4687–4692

    PubMed  CAS  Google Scholar 

  • Hansson E, Johansson BB, Westergren I, Ronnback L (1994) Glutamate-induced swelling of single astroglial cells in primary culture. Neuroscience 63:1057–1066

    PubMed  CAS  Google Scholar 

  • Hein TW, Xu W, Kuo L (2006) Dilation of retinal arterioles in response to lactate: Role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels. Invest Ophthalmol Vis Sci 47:693–699

    PubMed  Google Scholar 

  • Herman IM, D’Amore PA (1985) Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol 101:43–52

    PubMed  CAS  Google Scholar 

  • Hirase H, Qian L, Bartho P, Buzsaki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2:E96

    PubMed  Google Scholar 

  • Hu S, Kim HS (1993) Activation of K + channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid. Eur J Pharmacol 230:215–221

    PubMed  CAS  Google Scholar 

  • Hu Y, Wilson GS (1997a) A temporary local energy pool coupled to neuronal activity: Fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69:1484–1490

    CAS  Google Scholar 

  • Hu Y, Wilson GS (1997b) Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J Neurochem 68:1745–1752

    CAS  Google Scholar 

  • Iadecola C, Li J, Ebner TJ, Xu X (1995) Nitric oxide contributes to functional hyperemia in cerebellar cortex. Am J Physiol 268:R1153–R1162

    PubMed  CAS  Google Scholar 

  • Iadecola C, Li J, Xu S, Yang G (1996) Neural mechanisms of blood flow regulation during synaptic activity in cerebellar cortex. J Neurophysiol 75:940–950

    PubMed  CAS  Google Scholar 

  • Ignacio PC, Baldwin BA, Vijayan VK, Tait RC, Gorin FA (1990) Brain isozyme of glycogen phosphorylase: Immunohistological localization within the central nervous system. Brain Res 529:42–49

    PubMed  CAS  Google Scholar 

  • Ishimoto H, Matsuoka I, Nakanishi H, Nakahata N (1996) A comparative study of arachidonic acid metabolism in rabbit cultured astrocytes and human astrocytoma cells (1321N1). Gen Pharmacol 27:313–317

    PubMed  CAS  Google Scholar 

  • James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2 + signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447:247–260

    PubMed  CAS  Google Scholar 

  • Jimenez AI, Castro E, Delicado EG, Miras-Portugal MT (1998) Potentiation of adenosine 5′-triphosphate calcium responses by diadenosine pentaphosphate in individual rat cerebellar astrocytes. Neurosci Lett 246:109–111

    PubMed  CAS  Google Scholar 

  • Jimenez AI, Castro E, Communi D, Boeynaems JM, Delicado EG, Miras-Portugal MT (2000) Coexpression of several types of metabotropic nucleotide receptors in single cerebellar astrocytes. J Neurochem 75:2071–2079

    PubMed  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692

    PubMed  CAS  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    PubMed  CAS  Google Scholar 

  • Koyama Y, Mizobata T, Yamamoto N, Hashimoto H, Matsuda T, Baba A (1999) Endothelins stimulate expression of cyclooxygenase 2 in rat cultured astrocytes. J Neurochem 73:1004–1011

    PubMed  CAS  Google Scholar 

  • Kukley M, Barden JA, Steinhauser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21

    PubMed  CAS  Google Scholar 

  • Kunkler PE, Kraig RP (1998) Calcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures. J Neurosci 18:3416–3425

    PubMed  CAS  Google Scholar 

  • Lange A, Gebremedhin D, Narayanan J, Harder D (1997) 20-Hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent on activation of protein kinase C. J Biol Chem 272:27345–27352

    PubMed  CAS  Google Scholar 

  • Leao AAP (1944) Sperading depression of activity in the cerebral cortex. J Neurophysiol 7:359–390

    Google Scholar 

  • Lokkegaard A, Nyengaard JR, West MJ (2001) Stereological estimates of number and length of capillaries in subdivisions of the human hippocampal region. Hippocampus 11:726–740

    PubMed  CAS  Google Scholar 

  • Lou HC, Edvinsson L, MacKenzie ET (1987) The concept of coupling blood flow to brain function: Revision required? Ann Neurol 22:289–297

    PubMed  CAS  Google Scholar 

  • Luo J, Lindstrom CL, Donahue A, Miller MW (2001) Differential effects of ethanol on the expression of cyclo-oxygenase in cultured cortical astrocytes and neurons. J Neurochem 76:1354–1363

    PubMed  CAS  Google Scholar 

  • MacCumber MW, Ross CA, Snyder SH (1990) Endothelin in brain: Receptors, mitogenesis, and biosynthesis in glial cells. Proc Natl Acad Sci USA 87:2359–2363

    PubMed  CAS  Google Scholar 

  • MacVicar BA, Hochman D (1991) Imaging of synaptically evoked intrinsic optical signals in hippocampal slices. J Neurosci 11:1458–1469

    PubMed  CAS  Google Scholar 

  • Madsen PL, Cruz NF, Sokoloff L, Dienel GA (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: Excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 19:393–400

    PubMed  CAS  Google Scholar 

  • Massa PT, Mugnaini E (1982) Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: A freeze-fracture study. Neuroscience 7:523–538

    PubMed  CAS  Google Scholar 

  • Matyash V, Filippov V, Mohrhagen K, Kettenmann H (2001) Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol Cell Neurosci 18:664–670

    PubMed  CAS  Google Scholar 

  • Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: A mechanism of neurovascular coupling. J Neurosci 26:2862–2870

    PubMed  CAS  Google Scholar 

  • Metea MR, Kofuji P, Newman EA (2007) Neurovascular coupling is not mediated by potassium siphoning from glial cells. J Neurosci 27:2468–2471

    PubMed  CAS  Google Scholar 

  • Mintun MA, Vlassenko AG, Rundle MM, Raichle ME (2004) Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc Natl Acad Sci USA 101:659–664

    PubMed  CAS  Google Scholar 

  • Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R (2005) Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309:951–954

    PubMed  CAS  Google Scholar 

  • Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    PubMed  CAS  Google Scholar 

  • Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, Reis DJ, Minc-Golomb D, Schwartz JP (1993) Synthesis of nitric oxide in CNS glial cells. Trends Neurosci 16:323–328

    PubMed  CAS  Google Scholar 

  • Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: Cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129:905–913

    PubMed  CAS  Google Scholar 

  • Nakahara K, Okada M, Nakanishi S (1997) The metabotropic glutamate receptor mGluR5 induces calcium oscillations in cultured astrocytes via protein kinase C phosphorylation. J Neurochem 69:1467–1475

    PubMed  CAS  Google Scholar 

  • Nett WJ, Oloff SH, McCarthy KD (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87:528–537

    PubMed  Google Scholar 

  • Newman EA (1984) Regional specialization of retinal glial cell membrane. Nature 309:155–157

    PubMed  CAS  Google Scholar 

  • Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666

    PubMed  CAS  Google Scholar 

  • Newman EA, Frambach DA, Odette LL (1984) Control of extracellular potassium levels by retinal glial cell K + siphoning. Science 225:1174–1175

    PubMed  CAS  Google Scholar 

  • Nithipatikom K, Grall AJ, Holmes BB, Harder DR, Falck JR, Campbell WB (2001) Liquid chromatographic-electrospray ionization-mass spectrometric analysis of cytochrome P450 metabolites of arachidonic acid. Anal Biochem 298:327–336

    PubMed  CAS  Google Scholar 

  • Niwa K, Araki E, Morham SG, Ross ME, Iadecola C (2000) Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J Neurosci 20:763–770

    PubMed  CAS  Google Scholar 

  • Niwa K, Haensel C, Ross ME, Iadecola C (2001) Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res 88:600–608

    PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    PubMed  CAS  Google Scholar 

  • Oomagari K, Buisson B, Dumuis A, Bockaert J, Pin JP (1991) Effect of glutamate and ionomycin on the release of arachidonic acid, prostaglandins and HETEs from cultured neurons and astrocytes. Eur J Neurosci 3:928–939

    PubMed  Google Scholar 

  • Parri HR, Crunelli V (2001) Pacemaker calcium oscillations in thalamic astrocytes in situ. Neuroreport 12:3897–3900

    PubMed  CAS  Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+. oscillations in situ drive NMDAR-mediated neuronal excitation Nat Neurosci 4:803–812

    PubMed  CAS  Google Scholar 

  • Pasantes-Morales H (1996) Volume regulation in brain cells: Cellular and molecular mechanisms. Metab Brain Dis 11:187–204

    PubMed  CAS  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    PubMed  CAS  Google Scholar 

  • Paspalas CD, Papadopoulos GC (1996) Ultrastructural relationships between noradrenergic nerve fibers and non-neuronal elements in the rat cerebral cortex. Glia 17:133–146

    PubMed  CAS  Google Scholar 

  • Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: A highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830

    PubMed  CAS  Google Scholar 

  • Paulson OB, Newman EA (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237:896–898

    PubMed  CAS  Google Scholar 

  • Pearce B, Albrecht J, Morrow C, Murphy S (1986) Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci Lett 72:335–340

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    PubMed  CAS  Google Scholar 

  • Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299

    PubMed  CAS  Google Scholar 

  • Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia 55:1251–1262

    PubMed  Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1995) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+. ]i Glia 13:101–112

    PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081

    PubMed  CAS  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    PubMed  CAS  Google Scholar 

  • Price DL, Ludwig JW, Mi H, Schwarz TL, Ellisman MH (2002) Distribution of rSlo Ca2+. -activated K+ channels in rat astrocyte perivascular endfeet Brain Res 956:183–193

    PubMed  CAS  Google Scholar 

  • Quayle JM, Dart C, Standen NB (1996) The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J Physiol 494:(Pt 3)715–726

    PubMed  CAS  Google Scholar 

  • Raichle ME, Hartman BK, Eichling JO, Sharpe LG (1975) Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Natl Acad Sci USA 72:3726–3730

    PubMed  CAS  Google Scholar 

  • Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: For better and for worse. Prog Biophys Mol Biol 81:177–199

    PubMed  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol 11:85–108

    PubMed  CAS  Google Scholar 

  • Serrano A, Haddjeri N, Lacaille JC, Robitaille R (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5382

    PubMed  CAS  Google Scholar 

  • Shi Y, Liu X, Gebremedhin D, Falck JR, Harder DR, Koehler RC (2008) Interaction of mechanisms involving epoxyeicosatrienoic acids, adenosine receptors, and metabotropic glutamate receptors in neurovascular coupling in rat whisker barrel cortex. J Cereb Blood Flow Metab 28:(1)111–125

    PubMed  CAS  Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896

    PubMed  CAS  Google Scholar 

  • Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262

    PubMed  CAS  Google Scholar 

  • Smith JM, Bradley DP, James MF, Huang CL (2006) Physiological studies of cortical spreading depression. Biol Rev Camb Philos Soc 81:457–481

    PubMed  Google Scholar 

  • Sneyd J, Charles AC, Sanderson MJ (1994) A model for the propagation of intercellular calcium waves. Am J Physiol 266:C293–C302

    PubMed  CAS  Google Scholar 

  • Stella N, Estelles A, Siciliano J, Tence M, Desagher S, Piomelli D, Glowinski J, Premont J (1997) Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes. J Neurosci 17:2939–2946

    PubMed  CAS  Google Scholar 

  • Sul JY, Orosz G, Givens RS, Haydon PG (2004) Astrocytic Connectivity in the Hippocampus. Neuron Glia Biol 1:3–11

    PubMed  Google Scholar 

  • Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    PubMed  CAS  Google Scholar 

  • Takano T, Tian GF, Peng W, Lou N, Lovatt D, Hansen AJ, Kasischke KA, Nedergaard M (2007) Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 10:754–762

    PubMed  CAS  Google Scholar 

  • Tashiro A, Goldberg J, Yuste R (2002) Calcium oscillations in neocortical astrocytes under epileptiform conditions. J Neurobiol 50:45–55

    PubMed  CAS  Google Scholar 

  • Tong XK, Hamel E (2000) Basal forebrain nitric oxide synthase (NOS)-containing neurons project to microvessels and NOS neurons in the rat neocortex: Cellular basis for cortical blood flow regulation. Eur J Neurosci 12:2769–2780

    PubMed  CAS  Google Scholar 

  • Turner DA, Foster KA, Galeffi F, Somjen GG (2007) Differences in O2 availability resolve the apparent discrepancies in metabolic intrinsic optical signals in vivo and in vitro. Trends Neurosci 30:390–398

    PubMed  CAS  Google Scholar 

  • Venance L, Stella N, Glowinski J, Giaume C (1997) Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J Neurosci 17:1981–1992

    PubMed  CAS  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906

    PubMed  CAS  Google Scholar 

  • Vogel J, Kuschinsky W (1996) Decreased heterogeneity of capillary plasma flow in the rat whisker-barrel cortex during functional hyperemia. J Cereb Blood Flow Metab 16:1300–1306

    PubMed  CAS  Google Scholar 

  • Walz W, Gimpl G, Ohlemeyer C, Kettenmann H (1994) Extracellular ATP-induced currents in astrocytes: Involvement of a cation channel. J Neurosci Res 38:12–18

    PubMed  CAS  Google Scholar 

  • Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72:2001–2007

    PubMed  CAS  Google Scholar 

  • Wiencken AE, Casagrande VA (1999) Endothelial nitric oxide synthetase (eNOS) in astrocytes: Another source of nitric oxide in neocortex. Glia 26:280–290

    PubMed  CAS  Google Scholar 

  • Wu DM, Minami M, Kawamura H, Puro DG (2006) Electrotonic transmission within pericyte-containing retinal microvessels. Microcirculation 13:353–363

    PubMed  Google Scholar 

  • Yang G, Chen G, Ebner TJ, Iadecola C (1999) Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. Am J Physiol 277:R1760–R1770

    PubMed  CAS  Google Scholar 

  • Zonta M, Sebelin A, Gobbo S, Fellin T, Pozzan T, Carmignoto G (2003a) Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol 553:407–414

    CAS  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003b) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gordon, G., Mulligan, S., MacVicar, B. (2009). Astrocyte control of blood flow. In: Haydon, P., Parpura, V. (eds) Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79492-1_18

Download citation

Publish with us

Policies and ethics