Skip to main content

Triticeae Genome Structure and Evolution

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

Repeated nucleotide sequences are by far the largest component of Triticeae genomes, accounting for about 90% of the nuclear DNA. Tandem repeated sequences play an important role in chromosome function during mitosis and meiosis. Interspersed repeated sequences fill the intergenic regions. The most remarkable attribute of this component is its unprecedented rate of turnover, which is in stark contrast to the stability of gene content. The term “gene order paradox” is coined to reflect this dichotomy. A model is proposed postulating the existence of two strata in Triticeae genomes, “conservative” and “dynamic” to account for this paradox and its evolutionary causes. Numerous aspects of gene content in Triticeae genomes, such as the location of single-copy genes, multi-gene loci, gene deletions and duplications, gene density, restriction fragment length polymorphism and single nucleotide polymorphism, location of novel and lineage-specific genes, and the level of synteny, correlate with recombination rate and gene location on the centromere-telomere axis. Special attention is devoted to the discussion of gene distribution along chromosomes. It is pointed out that evidence for the existence of gene-rich islands is weak. A model accounting for correlation between gene density and recombination rate is proposed. It is suggested that the vast amounts of repeated sequences in Triticeae genomes play a role in the evolution of new genes and in adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhunov, E.D., Akhunov, A.R., Linkiewicz, A.M., Dubcovsky, J., Hummel, D., Lazo, G., Chao, S., Anderson, O.D., David, J., Qi, L.L., Echalier, B., Gill, B.S., Miftahudin, Gustafson, J.P., La Rota, M., Sorrells, M.E., Zhang, D., Nguyen, H.T., Kalavacharla, V., Hossain, K., Kianian, S., Peng, J., Lapitan, N.L.V., Wennerlind, E.J., Nduati, V., Anderson, J.A., Sidhu, D., Gill, K., McGuire, P.E., Qualset, C.O. and Dvořák, J. (2003a) Synteny perturbations between wheat homoeologous chromosomes by locus duplications and deletions correlate with recombination rates along chromosome arms. Proc. Natl. Acad. Sci. USA 100, 10836–10841.

    Google Scholar 

  • Akhunov, E.D., Goodyear, J.A., Geng, S., Qi, L.-L., Echalier, B., Gill, B.S., Miftahudin, Gustafson, J.P., Lazo, G., Chao, S., Anderson, O.D., Linkiewicz, A.M., Dubcovsky, J., La Rota, M., Sorrells, M.E., Zhang, D., Nguyen, H.T., Kalavacharla, V., K., H., Kianian, S.F., Peng, J., Lapitan, N.L.V., Gonzalez-Hernandez, J.L., Anderson, J.A., Choi, D.-W., Close, T.J., Dilbirligi, M., Gill, K.S., Walker-Simmons, M.K., Steber, C., McGuire, P.E., Qualset, C.O. and Dvořák, J. (2003b) The organization and rate of evolution of the wheat genomes are correlated with recombination rates along chromosome arms. Genome Res. 13, 753–763.

    Google Scholar 

  • Akhunov, E.D., Akhunova, A.R. and Dvořák, J. (2005) BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theor. Appl. Genet. 111, 1617–1622.

    Article  PubMed  CAS  Google Scholar 

  • Akhunov, E.D., Akhunova, A.R. and Dvořák, J. (2007a) Mechanisms and rates of birth and death of dispersed duplicated genes during the evolution of a multigene family in diploid and tetraploid wheats. Mol. Biol. Evol. 24, 539–550.

    Google Scholar 

  • Akhunov, E.D., Akhunova, A.R., Saini, B., Grishina, I., Morrell, P.L., Toleno, D., Clegg, M.T. and Dvořák, J. (2007b) Genetic diversity of diploid ancestors of wheat. Plant and Animal Genome XV, San Diego, CA, pp. 168.

    Google Scholar 

  • Alkhimova, O.G., Mazurok, N.A., Potapova, T.A., Zakian, S.M., Heslop-Harrison, J.S. and Vershinin, A.V. (2004) Diverse patterns of the tandem repeats organization in rye chromosomes. Chromosoma 113, 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Amor, D.J., Kalitsis, P., Sumer, H. and Choo, K.H.A. (2004) Building the centromere: from foundation proteins to 3D organization. Trends in Cell Biol. 14, 359–368.

    Article  CAS  Google Scholar 

  • Anamthawat-Jonsson, K., Schwarzacher, T., Leitch, A.R., Bennett, M.D. and Heslop-Harrison, J.S. (1990) Discrimination between closely related species using genomic DNA as a probe. Theor. Appl. Genet. 79, 721–728.

    Article  CAS  Google Scholar 

  • Anamthawat-Jonsson, K. and Heslop-Harrison, J.S. (1993) Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol. Gen. Genet. 240, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Appels, R., Driscoll, C. and Peacock, W.J. (1978) Heterochromatin and highly repeated DNA sequences in rye (Secale cereale). Chromosoma 70, 67–89.

    Article  CAS  Google Scholar 

  • Appels, R., Gerlach, W.L., Dennis, E.S., Swift, H. and Peacock, W.J. (1980) Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma 78, 293–311.

    Article  CAS  Google Scholar 

  • Appels, R., Dennis, E.S., Smyth, D.R. and Peacock, W.J. (1981) Two repeated DNA-sequences from the heterochromatic regions of rye (Secale cereale) chromosomes. Chromosoma 84, 265–277.

    Article  CAS  Google Scholar 

  • Appels, R. and Dvořák, J. (1982) The wheat ribosomal DNA spacer: its structure and variation in populations and among species. Theor. Appl. Genet. 63, 337–348.

    Article  CAS  Google Scholar 

  • Appels, R. and Moran, L.B. (1984) Molecular analysis of alien chromatin introduced into wheat. In: P.J. Gustafson (Ed.), Stadler Genetics Symposia. University of Missouri, Columbia, MO, pp. 529–557.

    Google Scholar 

  • Appels, R. and Honeycutt, R.L. (1986) rDNA: evolution over a billion years. In: S.K. Dutta (Ed.), DNA Systematics. CRC Press, Florida, pp. 81–135.

    Google Scholar 

  • Appels, R., Reddy, P., McIntyre, C.L., Moran, L.B., Frankel, O.H. and Clarke, B.C. (1989) The molecular-cytogenetic analysis of grasses and its application to studying relationships among species Triticeae. Genome 31, 122–133.

    Article  PubMed  CAS  Google Scholar 

  • Aragon-Alcaide, L., Miller, T., Schwarzacher, T., Reader, S. and Moore, G. (1996) A cereal centromeric sequence. Chromosoma 105, 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan, K. and Earle, E.D. (1991) Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218.

    Article  CAS  Google Scholar 

  • Bedbrook, J.R., Jones, J., O'Dell, M., Thompson, R.D. and Flavell, R.B. (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560.

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky, D.A. and Ananiev, E.V. (1990) Characterization of relic DNA from barley genome. Theor. Appl. Genet. 80, 374–380.

    Article  Google Scholar 

  • Bennett, M.D. (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc. Royal Soc. Lond. B 181, 109–135.

    Article  CAS  Google Scholar 

  • Bennett, M.D. and Smith, J.B. (1976) Nuclear DNA amounts in angiosperms. Phil. Trans. Royal Soc. Lond. Ser. B, Biol. Sci. 274, 227–274.

    Article  CAS  Google Scholar 

  • Bennett, M.D., Gustafson, J.P. and Smith, J.B. (1977) Variation in nuclear DNA in genus Secale. Chromosoma 61, 149–176.

    Article  CAS  Google Scholar 

  • Bennetzen, J.L. and Kellogg, E.A. (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9, 1509–1514.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, P., Maure, J.F., Partridge, J.F., Genier, S., Javerzat, J.P. and Allshire, R.C. (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, E.H. (1986) Structure and formation of telomeres in Holotrichous Ciliates. Internatl. Rev. Cytol. 99, 29–47.

    Article  CAS  Google Scholar 

  • Brandes, A., Roder, M.S. and Ganal, M.W. (1995) Barley telomeres are associated with two different types of satellite DNA-sequences. Chromosome Res. 3, 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E. and Wessler, S.R. (1994) Mobile inverted-repeat elements of the tourist family are associated with the genes of many cereal grasses. Proc. Natl. Acad. Sci. USA 91, 1411–1415.

    Article  PubMed  CAS  Google Scholar 

  • Castilho, A. and Heslop-Harrison, J.S. (1995) Physical mapping of 5S and 18S-25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38, 91–96.

    Article  PubMed  CAS  Google Scholar 

  • Chantret, N., Salse, J., Sabot, F., Rahman, S., Bellec, A., Laubin, B., Dubois, I., Dossat, C., Sourdille, P., Joudrier, P., Gautier, M.F., Cattolico, L., Beckert, M., Aubourg, S., Weissenbach, J., Caboche, M., Bernard, M., Leroy, P. and Chalhoub, B. (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17, 1033–1045.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Z.J. and Murata, M. (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy retroelement in wheat and its relatives. Genetics 164, 665–672.

    PubMed  CAS  Google Scholar 

  • Cheung, W.Y., Money, T.A., Abbo, S., Devos, K.M., Gale, M.D. and Moore, G. (1994) A family of related sequences associated with (TTTAGGG)n repeats are located in the interstitial regions of wheat chromosomes. Mol. Gen. Genet. 245, 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S., Yacobi, K. and Segal, D. (2003) Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res. 13, 1133–1145.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M.N., Lee, C.Y., Wilkerson, J.L. and Dresser, M.E. (2007) MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 104, 8863–8868.

    Article  PubMed  CAS  Google Scholar 

  • Crosby, A.R. (1957) Nucleolar activity of lagging chromosomes in wheat. Amer. J. Bot. 44, 813–822.

    Article  Google Scholar 

  • Cuadrado, A., Schwarzacher, T. and Jouve, N. (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor. Appl. Genet.101, 711–717.

    Article  CAS  Google Scholar 

  • Cuadrado, A. and Jouve, N. (2007) The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Chromos. Res. 15, 711–720.

    Article  CAS  Google Scholar 

  • Dennis, E.S., Gerlach, W.L. and Peacock, W.J. (1980) Identical polypyrimidine-polypurine satellite DNAs in wheat and barley. Heredity 44, 344–366.

    Article  Google Scholar 

  • Devos, K.M., Brown, J.K.M. and Bennetzen, J.L. (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  • Devos, K.M., Ma, J.X., Pontaroli, A.C., Pratt, L.H. and Bennetzen, J.L. (2005) Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc. Natl. Acad. Sci. USA 102, 19243–19248.

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky, J. and Dvořák, J. (1995) Ribosomal RNA loci: nomads in the Triticeae genomes. Genetics 140, 1367–1377.

    PubMed  CAS  Google Scholar 

  • Dubcovsky, J., Luo, M.C., Zhong, G.Y., Bransteitter, R., Desai, A., Kilian, A., Kleinhofs, A. and Dvořák, J. (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143, 983–999.

    PubMed  CAS  Google Scholar 

  • Dubcovsky, J. and Dvořák, J. (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866.

    Article  PubMed  CAS  Google Scholar 

  • Dvořák, J. and Fowler, D.B. (1978) Cold hardiness potential of triticale and tetraploid rye. Crop Sci. 17, 477–478.

    Article  Google Scholar 

  • Dvořák, J. and Appels, R. (1982) Chromosomal and nucleotide sequence differentiation in genomes of polyploid Triticum species. Theor. Appl. Genet. 63, 349–360.

    Article  Google Scholar 

  • Dvořák, J. and Chen, K.-C. (1984) Distribution of nonstructural variation between wheat cultivars along chromosome arm 6Bp: evidence from the linkage map and physical map of the arm. Genetics 106, 325–333.

    PubMed  Google Scholar 

  • Dvořák, J., Lassner, M.W., Kota, R.S. and Chen, K.C. (1984a) The distribution of the ribosomal RNA genes in the Triticum speltoides and Elytrigia elongata genomes. Can. J. Genet. Cytol. 26, 628–632.

    Google Scholar 

  • Dvořák, J., McGuire, P.E. and Mendlinger, S. (1984b) Inferred chromosome morphology of the ancestral genome of Triticum. Plant Syst. Evol. 144, 209–220.

    Google Scholar 

  • Dvořák, J. and Appels, R. (1986) Investigation of homologous crossing over and sister chromatid exchange in the wheat Nor-2 locus coding for rRNA and Gli-B2 locus coding for gliadins. Genetics 113, 1037–1056.

    PubMed  Google Scholar 

  • Dvořák, J., Zhang, H.B., Kota, R.S. and Lassner, M. (1989) Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome 32, 1003–1016.

    Article  Google Scholar 

  • Dvořák, J. and Zhang, H.B. (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc. Natl. Acad. Sci. USA 87, 9640–9644.

    Article  PubMed  Google Scholar 

  • Dvořák, J., Luo, M.-C. and Yang, Z.-L. (1998) Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148, 423–434.

    PubMed  Google Scholar 

  • Dvořák, J., Akhunov, A.D., Akhunov, A.R., Luo, M.C., Linkiewicz, A.M., Dubcovsky, J., Hummel, D., Lazo, G., Chao, S., Anderson, O.D., David, J., Qi, L.L., Echalier, B., Gill, B.S., Miftahudin, Gustafson, J.P., La Rota, M., Sorrells, M.E., Zhang, D., Nguyen, H.T., Kalavacharla, V., Hossain, K., Kianian, S.F., Peng, J.H., Lapitan, N.L.V., Wennerlind, E.J., Nduati, V., Anderson, J.A., Sidhu, D., Gill, K.S., Choi, D.-W., Close, T.J., McGuire, P.E. and Qualset, C.O. (2003) New insights into the organization and evolution of wheat genomes. In: N.E. Pogna, M. Romano, E.A. Pogna and G. Galterio (Eds.), 10th Inernational Wheat Genetics Symposium. SIMI, Rome, Italy, pp. 261–264.

    Google Scholar 

  • Dvořák, J., Yang, Z.-L., You, F.M. and Luo, M.C. (2004) Deletion polymorphism in wheat chromosome regions with contrasting recombination rates. Genetics 168, 1665–1675.

    Article  PubMed  CAS  Google Scholar 

  • Dvořák, J. and Akhunov, E.D. (2005) Tempos of deletions and duplications of gene loci in relation to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171, 323–332.

    Article  PubMed  CAS  Google Scholar 

  • Dvořák, J., Akhunov, E.D., Akhunov, A.R., Deal, K.R. and Luo, M.C. (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol. Biol. Evol. 23, 1386–1396.

    Google Scholar 

  • Echenique, V.C., Stamova, B., Volters, P., Lazo, G.R., Carollo, V.L. and Dubcovsky, J. (2002) Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor. Appl. Genet. 104, 840–844.

    Article  PubMed  CAS  Google Scholar 

  • Fajkus, J., Sykorova, E. and Leitch, A.R. (2005) Telomeres in evolution and evolution of telomeres. Chromos. Res. 13, 469–479.

    Article  CAS  Google Scholar 

  • Finnegan, D.J. (1985) Transposable elements in eukaryotes. Internatl. Rev. Cytol. 93, 281–326.

    Article  CAS  Google Scholar 

  • Flavell, R.B., Bennett, M.D., Smith, J.B. and Smith, D.B. (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Gen. 12, 257–269.

    Article  CAS  Google Scholar 

  • Friebe, B., Tuleen, N., Jiang, J. and Gill, B.S. (1993) Standard karyotype of Triticum longissimum and its cytogenetic relationship with T. aestivum. Genome 36, 731–742.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, K.N., Suzuki, G., Lagudah, E.S., Rahman, S., Appels, R., Yamamoto, M. and Mukai, Y. (2001) Physical arrangement of retrotransposon-related repeats in centromeric regions of wheat. Plant Cell Physiol. 42, 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Gale, M.D. and Devos, K.M. (1998) Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 95, 1971–1974.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach, W.L., Appels, R., Dennis, E.S. and Peacock, W.J. (1979) Evolution and analysis of wheat genomes using highly repeated DNA sequences. In: S. Ramanujam (Ed.), Fifth International Wheat Genetics Symposium. Indian Society of Genetics and Plant Breeding, Indian Agricultural Research Institute, New Delhi, India, pp. 81–91.

    Google Scholar 

  • Gerlach, W.L., Miller, T.E. and Flavell, R.B. (1980) The nucleolus organizers of diploid wheats revealed by in situ hybridization. Theor. Appl. Genet. 58, 97–100.

    Article  Google Scholar 

  • Gill, B.S. and Kimber, G. (1974) Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci. USA 71, 4086–4090.

    Article  PubMed  CAS  Google Scholar 

  • Gill, K.S., Gill, B.S. and Endo, T.R. (1993) A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma 102, 374–381.

    Article  CAS  Google Scholar 

  • Greenblatt, I.M. and Brink, R.A. (1962) Twin mutations in medium variegated pericarp maize. Genetics 47, 489–501.

    PubMed  CAS  Google Scholar 

  • Grewal, S.I.S. and Klar, A.J.S. (1997) A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating-type switching in fission yeast. Genetics 146, 1221–1238.

    PubMed  CAS  Google Scholar 

  • Grewal, S.I.S. and Moazed, D. (2003) Heterochromatin and epigenetic control of gene expression. Science 301, 798–802.

    Article  PubMed  CAS  Google Scholar 

  • Harper, L., Golubovskaya, I. and Cande, W.Z. (2004) A bouquet of chromosomes. J. Cell Sci. 117, 4025–4032.

    Article  PubMed  CAS  Google Scholar 

  • Houben, A., Schroeder-Reiter, E., Nagaki, K., Nasuda, S., Wanner, G., Murata, M. and Endo, T.R. (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116, 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B.S., Haselkorn, R. and Gornicki, P. (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phopshoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 99, 8133–8138.

    Article  PubMed  CAS  Google Scholar 

  • Hudakova, S., Michalek, W., Presting, G.G., Ten Hoopen, R., Dos Santos, K., Jasencakova, Z. and Schubert, I. (2001) Sequence organization of barley centromeres. Nucl. Acid Res. 29, 5029–5035.

    Article  CAS  Google Scholar 

  • Jakob, S.S., Meister, A. and Blattner, F.R. (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol. Biol. Evol. 21, 860–869.

    Google Scholar 

  • Jiang, J. and Gill, B.S. (1994) New 18S-26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, N., Bao, Z., Zhang, X., Eddy, S.R. and Wessler, S.R. (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 30, 569–573.

    Article  CAS  Google Scholar 

  • Jones, J.D.G. and Flavell, R.B. (1982a) The structure, amount and chromosomal localization of defined repeated DNA-sequences in species of the genus Secale. Chromosoma 86, 613–641.

    Google Scholar 

  • Jones, J.D.G. and Flavell, R.B. (1982b) The mapping of highly-repeated DNA families and their relationship to C-bands in chromosomes of Secale cereale. Chromosoma 86, 595–612.

    Google Scholar 

  • Juretic, N., Hoen, D.R., Huynh, M.L., Marrison, P.M. and Bureau, T.E. (2006) The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res. 15, 1292–1297.

    Article  CAS  Google Scholar 

  • Kanazin, V., Ananiev, E. and Blake, T. (1993) The genetics of 5S rRNA encoding multigene families in barley. Genome 36, 1023–1028.

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov, V.V. and Jurka, J. (2001) Rolling-circle transposons in eukaryotes. Proc. Natl. Acad. Sci. USA 98, 8714–8719.

    Article  PubMed  CAS  Google Scholar 

  • Katsiotis, A., Hagidimitriou, M. and Heslop-Harrison, J.S. (1997) The close relationship between the A and B genomes in Avena L. (Poaceae) determined by molecular cytogenetic analysis of total genomic, tandemly and dispersed repetitive DNA sequences. Annals Bot. 79, 103–109.

    Article  CAS  Google Scholar 

  • Khrustaleva, L.I., de Melo, P.E., van Heusden, A.W. and Kik, C. (2005) The integration of recombination and physical maps in a large-genome monocot using haploid genome analysis in a trihybrid Allium population. Genetics 169, 1673–1685.

    Article  PubMed  CAS  Google Scholar 

  • Kilian, A., Kudrna, D. and Kleinhofs, A. (1999) Genetic and molecular characterization of barley chromosome telomeres. Genome 42, 412–419.

    Article  CAS  Google Scholar 

  • Kilian, B., Özkan, H., Deusch, O., Effgen, S., Brandolini, A., Kohl, J., Martin, W. and Salamini, F. (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol. Biol. Evol. 24, 217–227.

    Google Scholar 

  • Kishii, M., Nagaki, K., Tsujimoto, H. and Sasakuma, T. (1999) Exclusive localization of tandem repetitive sequences in subtelomeric heterochromatin regions of Leymus racemosus (Poaceae, Triticeae). Chromosome Res. 7, 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Kishii, M., Nagaki, K. and Tsujimoto, H. (2001) A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Chromos. Res. 9, 417–428.

    Article  CAS  Google Scholar 

  • Kishii, M. and Tsujimoto, H. (2002) Genus-specific localization of the TaiI family of tandem-repetitive sequences in either the centromeric or subtelomeric regions in Triticeae species (Poaceae) and its evolution in wheat. Genome 45, 946–955.

    Article  PubMed  CAS  Google Scholar 

  • Kunzel, G., Korzun, L. and Meister, A. (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154, 397–412.

    PubMed  CAS  Google Scholar 

  • Lassner, M. and Dvořák, J. (1986) Preferential homogenization between adjacent and alternate subrepeats in wheat rDNA. Nucl. Acid. Res. 14, 5499–5512.

    Article  CAS  Google Scholar 

  • Lassner, M., Anderson, O. and Dvořák, J. (1987) Hypervariation associated with a 12-nucleotide direct repeat and inferences on intragenomic homogenization of ribosomal RNA gene spacer based on the DNA sequence of a clone from the wheat Nor-D3 locus. Genome 29, 770–781.

    Article  CAS  Google Scholar 

  • Lawrence, G.J. and Appels, R. (1986) Mapping the nucleolus organizing region, seed protein loci and isozyme loci on chromosome 1R in rye. Theor. Appl. Genet. 71, 742–749.

    Article  CAS  Google Scholar 

  • Leitch, A.R., Mosgoller, W., Shi, M. and Heslop-Harrison, J.S. (1992) Different patterns of rDNA organization at interphase in nuclei of wheat and rye. J. Cell Sci. 101, 751–757.

    PubMed  Google Scholar 

  • Leitch, I.J. and Heslop-Harrison, J.S. (1992) Physical mapping of the 18S-5.8S-26S rRNA genes in barley by in situ hybridization. Genome 35, 1013–1018.

    Article  CAS  Google Scholar 

  • Li, W., Zhang, P., Fellers, J.P., Friebe, B. and Gill, B.S. (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J. 40, 500–511.

    Article  PubMed  CAS  Google Scholar 

  • Linde-Laursen, I. and Baden, C. (1994) Comparison of the Giemsa C-banded karyotypes of the three subspecies of Psathyrostachys fragilis, subspp. villosus (2x), secaliformis (2x, 4x), and fragilis (2x) (Poaceae), with notes on chromosome pairing. Pl. Syst. Evol. 191, 183–198.

    Google Scholar 

  • Longwell, A.C. and Svihla, G. (1960) Specific chromosomal control of the nucleolus and of cytoplasm in wheat. Exp. Cell Res. 20, 294–312.

    Article  CAS  Google Scholar 

  • Löve, A. (1984) Conspectus of the Triticeae. Feddes Repertorium 95, 425–521.

    Google Scholar 

  • Lukaszewski, A.J. and Curtis, C.A. (1993) Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theor. Appl. Genet. 84, 121–127.

    Google Scholar 

  • Luo, M.C., Thomas, C., Deal, K.R., You, F.M., Anderson, O.D., Gu, Y.G., Li, W., Kuraparthy, V., Gill, B.S., McGuire, P.E. and Dvořák, J. (2003) Construction of contigs of Ae. tauschii genomic DNA fragments cloned in BAC and BiBAC vectors. In: N.E. Pogna, M. Romano, E.A. Pogna and G. Galterio (Eds.) 10th International Wheat Genetics Symposium. Institute Sperimentale per la Cerealicoltura, Roma, Italy, pp. 293–296.

    Google Scholar 

  • Luo, M.C., Deal, K.R., Young, Z.L. and Dvořák, J. (2005) Comparative genetic maps reveal extreme crossover localization in the Aegilops speltoides chromosomes. Theor. Appl. Genet. 111, 1098–1106.

    Article  PubMed  CAS  Google Scholar 

  • Mao, L., Devos, K.M., Zhu, L. and Gale, M.D. (1997) Cloning and genetic mapping of wheat telomere-associated sequences. Mol. Gen. Genet. 254, 584–591.

    Article  PubMed  CAS  Google Scholar 

  • Metzlaff, M., Troebner, W., Baldauf, F., Schlegel, R. and Cullum, J. (1986) Wheat specific repetitive DNA-sequences – construction and characterization of 4 different genomic clones. Theor. Appl. Genet. 72, 207–210.

    Article  CAS  Google Scholar 

  • Miller, J.T., Dong, F.G., Jackson, S.A., Song, J. and Jiang, J.M. (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150, 1615–1623.

    PubMed  CAS  Google Scholar 

  • Miller, T.E., Hutchinson, J. and Reader, S.M. (1983) The identification of the nucleolus organiser chromosomes of diploid wheat. Theor. Appl. Genet. 65, 145–147.

    Article  Google Scholar 

  • Morgante, M. (2006) Plant genome organisation and diversity: the year of the junk! Curr. Opin. Biotech. 17, 168–173.

    Article  CAS  Google Scholar 

  • Mukai, Y., Endo, T.R. and Gill, B.S. (1991) Physical mapping of the 18S.26S rRNA multigene family in common wheat: identification of a new locus. Chromosoma 100, 71–78.

    Article  CAS  Google Scholar 

  • Nagaki, K., Tsujimoto, H., Isono, K. and Sasakuma, T. (1995) Molecular characterization of a tandem repeat, Afa family, and distribution among Triticeae. Genome 38, 479–486.

    Article  PubMed  CAS  Google Scholar 

  • Nagaki, K., Tsujimoto, H. and Sasakuma, T. (1998a) Dynamics of tandem repetitive Afa-family sequences in Triticeae, wheat-related species. J. Mol. Evol. 47, 183–189.

    Google Scholar 

  • Nagaki, K., Tsujimoto, H. and Sasakuma, Y. (1998b) H genome specific repetitive sequence, pEt2, of Elymus trachycaulus in part of Afa family of Triticeae. Genome 41, 134–136.

    Google Scholar 

  • Nagaki, K., Kishii, M., Tsujimoto, H. and Sasakuma, T. (1999) Tandem repetitive Afa-family sequences from Leymus racemosus and Psathyrostachys juncea (Poaceae). Genome 42, 1258–1260.

    PubMed  CAS  Google Scholar 

  • Nasuda, S., Hudakova, S., Schubert, I., Houben, A. and Endo, T.R. (2005) Stable barley chromosomes without centromeric repeats. Proc. Natl. Acad. Sci. USA 102, 9842–9847.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S. (1980) So much 'junk' DNA in our genome. Brookhaven Symp. Biol. 23, 604–607.

    Google Scholar 

  • Orgel, L.E. and Crick, F.H.C. (1980) Selfish DNA – the ultimate parasite. Nature 284, 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Pandita, T.K., Hunt, C.R., Sharma, G.G. and Yang, Q. (2007) Regulation of telomere movement by telomere chromatin structure. Cell. Mol. Life Sci. 64, 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Paux, E., Roger, D., Badaeva, E., Gay, G., Bernard, M., Sourdille, P. and Feuillet, C. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 48, 463–474.

    Article  PubMed  CAS  Google Scholar 

  • Peacock, W.J., Gerlach, W.L. and Dennis, E.S. (1981) Molecular aspects of wheat evolution: repeated DNA sequences. In: L.T. Evans and W.J. Peacock (Eds.), Wheat Science-Today and Tomorrow. Cambridge University Press, Cambridge, pp. 41–60.

    Google Scholar 

  • Pedersen, C., Rasmussen, S.K. and LindeLaursen, I. (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39, 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Pestsova, E.G., Goncharov, N.P. and Salina, E.A. (1998) Elimination of a tandem repeat of telomeric heterochromatin during the evolution of wheat. Theor. Appl. Genet. 97, 1380–1386.

    Article  Google Scholar 

  • Presting, G.G., Malysheva, L., Fuchs, J. and Schubert, I.Z. (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16, 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Prieto, P., Martin, A. and Cabrera, A. (2004) Chromosomal distribution of telomeric and telomeric-associated sequences in Hordeum chilense by in situ hybridization. Hereditas 141, 122–127.

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna, W., Dubcovsky, J., Park, Y.J., Busso, C., Embereton, J., SanMiguel, P. and Bennetzen, J.L. (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologus segments from four cereal genomes. Genetics 162, 1389–1400.

    PubMed  CAS  Google Scholar 

  • Rayburn, A.L. and Gill, B.S. (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Report. 4, 102–109.

    Article  CAS  Google Scholar 

  • Rayburn, A.L. and Gill, B.S. (1987) Molecular analysis of the D-genome of the Triticeae. Theor. Appl. Genet. 73, 385–388.

    Article  CAS  Google Scholar 

  • Roder, M.S., Lapitan, N.L.V., Sorrells, M.E. and Tanksley, S.D. (1993) Genetic and physical mapping of barley telomeres. Mol. Gen. Genet. 238, 294–303.

    PubMed  CAS  Google Scholar 

  • Sabot, F., Guyot, R., Wicker, T., Chantret, N., Laubin, B., Chalhoub, B., Leroy, P., Sourdille, P. and Bernard, M. (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol. Genet. Genom. 274, 119–130.

    Article  CAS  Google Scholar 

  • Šafář, J., Bartoš, J., Janda, J., Bellec, A., Kubaláková, M., Valárik, M., Pateyron, S., Weiserová, J., Tušková, J., Čihalíková, J., Vrána, J., Šimková, H., Faivre-Rampant, P., Sourdille, P., Caboche, M., Bernard, M., Doležel, J. and Chalhoub, B. (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J. 39, 960–968.

    Article  PubMed  CAS  Google Scholar 

  • Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R.W. (1984) Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014–8018.

    Article  PubMed  CAS  Google Scholar 

  • Salina, E.A., Lim, K.Y., Badaeva, E.D., Shcherban, A.B., Adonina, I.G., Amosova, A.V., Samatadze, T.E., Vatolina, T.Y., Zoshchuk, S.A. and Leitch, A.R. (2006) Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 49, 1023–1035.

    Article  PubMed  CAS  Google Scholar 

  • Sandhu, D., Champoux, J.A., Bondareva, S.N. and Gill, K.S. (2001) Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157, 1735–1747.

    PubMed  CAS  Google Scholar 

  • Sandhu, D. and Gill, K.S. (2002) Gene-containing regions of wheat and the other grass genomes. Plant Physiol. 128, 803–811.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.-K., Moutchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edvards, K.J., Lee, M., Avramova, Z. and Bennetzen, J.L. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Scherthan, H. (2007) Telomere attachment and clustering during meiosis. Cellular Mol. Life Sci. 64, 117–124.

    Article  CAS  Google Scholar 

  • Schwarzacher, T. and Heslop-Harrison, J.S. (1991) In situ hybridization to plant telomeres using synthetic oligomers. Genome 34, 317–323.

    Article  Google Scholar 

  • Schweizer, D. and Loidl, J. (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. Chromos. Today 9, 61–74.

    Google Scholar 

  • See, D.R., Brooks, S., Nelson, J.C., Brown-Guedira, G., Friebe, B. and Gill, B.S. (2006) Gene evolution at the ends of wheat chromosomes. Proc. Natl. Acad. Sci. USA 103, 4162–4167.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.B. and Flavell, R.B. (1975) Characterisation of the wheat genome by renaturation kinetics. Chromosoma 50, 223–242.

    Article  CAS  Google Scholar 

  • Sorrells, M.E., La Rota, C.M., Bermudez-Kandianis, C.E., Greene, R.A., Kantety, R., Munkvold, J.D., Miftahudin, Mahmoud, A., Gustafson, J.P., Qi, L.L., Echalier, B., Gill, B.S., Matthews, D., Lazo, G., Chao, S., Anderson, O.D., Edwards, H., Linkiewicz, A.M., Dubcovsky, J., Akhunov, E.D., Dvořák, J., Zhang, D., Nguyen, H.T., Peng, J., Lapitan, N.L.V., Gonzalez-Hernandez, J.L., Anderson, J.A., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Choi, D.W., Close, T.J., Dilbirligi, M., Gill, K.S., Steber, C., Walker-Simmons, M.K., McGuire, P.E. and Qualset, C.O. (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 13, 1818–1827.

    PubMed  CAS  Google Scholar 

  • Taketa, S., Ando, H., Takeda, K., Harrison, G.E. and Heslop-Harrison, J.S. (2000) The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor. Appl. Genet. 100, 169–176.

    Article  CAS  Google Scholar 

  • Thompson, P.E. (1964) Evidence on the basis of the centromere effect in the large autosomes of Drosophila melanogaster. Genetics 49, 761–769.

    PubMed  CAS  Google Scholar 

  • Van't Hof, J. and Sparrow, A.H. (1963) A relationship between DNA content, nuclear volume, and minimum mitotic cycle time. Proc. Natl. Acad. Sci. USA 49, 897–902.

    Google Scholar 

  • Van Schaik, N.W. and Brink, R.A. (1959) Transpositions of modulator, a component of the variegated pericarp allele in maize. Genetics 44, 725–738.

    PubMed  Google Scholar 

  • Vershinin, A.V., Schwarzacher, T. and Heslop-Harrison, J.S. (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7, 1823–1833.

    Article  PubMed  CAS  Google Scholar 

  • Vershinin, A.V. and Heslop-Harrison, J.S. (1998) Comparative analysis of the nucleosomal structure of rye, wheat and their relatives. Plant Mol. Biol. 36, 149–161.

    Article  PubMed  CAS  Google Scholar 

  • Vicient, C.M., Suoniemi, A., Anamthawat-Jónsson, K., Tanskanen, J., Beharav, A., Nevo, E. and Schulman, A.H. (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11, 1769–1784.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, K.P., Arumuganathan, R. and Jensen, K.B. (1999) Nuclear DNA content of perennial grasses of the Triticeae. Crop Sci. 39, 661–667.

    Article  Google Scholar 

  • Werner, J.E., Kota, R.S., Gill, B.S. and Endo, T.R. (1992) Distribution of telomeric repeats and their role in the healing of broken chromosome ends in wheat. Genome 35, 844–848.

    Article  Google Scholar 

  • Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E. and Keller, B. (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 26, 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., Guyot, R., Yahiaoui, N. and Keller, B. (2003a) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Phys. 132, 52–63.

    Google Scholar 

  • Wicker, T., Yahiaoui, N., Guyot, R., Schlagenhauf, E., Liu, Z.D., Dubcovsky, J. and Keller, B. (2003b) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15, 1186–1197.

    Google Scholar 

  • Wicker, T., Zimmermann, W., Perovic, D., Paterson, A.H., Ganal, M., Graner, A. and Stein, N. (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant J. 41, 184–194.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P. and Schulman, A.H. (2007) A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z.-Y. and Appels, R. (1988) Occurence of rye (Secale cereale) 350-family DNA sequences in Agropyron and other Triticeae. Plant Syst. Evol. 160, 65–76.

    Google Scholar 

  • Zhang, H.B. and Dvořák, J. (1990) Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopyrum chromatin in wheat genomes. Genome 33, 283–293.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author is grateful to Patrick E. McGuire and Karin R. Deal for reading the manuscript and making valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Dvořák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dvořák, J. (2009). Triticeae Genome Structure and Evolution. In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_23

Download citation

Publish with us

Policies and ethics