Skip to main content

Genomics of Quality Traits

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

The quality attributes of cereal grains are valued in the context of a complex food chain that integrates outputs achievable by breeding, production, and processing. New processing technologies, environmental change, and changes in consumer preferences demand that quality attributes of wheat and barley need to be continually modified. The advances in the genomics of quality described in this chapter provide the basis for ensuring that the genetic approaches encompassing the complexities of the gene networks underpinning quality attributes can meet the challenges presented by the rapid changes occurring within the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, M. (2000) Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor. Appl. Genet. 101, 892–896.

    CAS  Google Scholar 

  • Altenbach, S.B. and Kothari, K.M. (2007) Omega gliadin genes expressed in Triticum aestivum cv. Butte 86: effects of post-anthesis fertilizer on transcript accumulation during grain development. J. Cereal Sci. 46,169–177.

    CAS  Google Scholar 

  • Anderson, J.V. and Morris, C.F. (2003) Purification and analysis of wheat grain polyphenol oxidase (PPO) protein. Cereal Chem. 80, 135–143.

    CAS  Google Scholar 

  • Anderson, O.D. (1991) Characterization of members of a pseudogene subfamily of the wheat α-gliadin storage protein genes. Plant Mol. Biol. 16, 335–337.

    PubMed  CAS  Google Scholar 

  • Anderson, O.D. and Greene, F.C. (1989) The characterization and comparative analysis of high-molecular-weight glutenin genes from genomes A and B of a hexaploid bread wheat. Theor. Appl. Genet. 77, 689–700.

    CAS  Google Scholar 

  • Anderson, O.D. and Greene, F.C. (1997) The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure and origins of pseudogenes. Theor. Appl. Genet. 95, 59–65.

    CAS  Google Scholar 

  • Anderson, O.D., Hsia, C.C., Adalstein, A.E., Lew, E.J.-L. and Kasarda, D.D. (2001) Identification of several new classes of low-molecular weight wheat gliadin-related proteins and genes. Theor. Appl. Genet. 103, 307–315.

    CAS  Google Scholar 

  • Anderson, O.D., Litts, J.C. and Greene, F.C. (1997) The α-gliadin gene family. I. Characterization of ten new wheat α-gliadin gene clones, evidence for limited sequence conservation of flanking DNA, and Southern analysis of the gene family. Theor. Appl. Genet. 95, 50–58.

    CAS  Google Scholar 

  • Anderson, O.D., Rausch, C., Moullet, O. and Lagudah, E.S. (2003) The wheat D-genome HMW glutenin locus: BAC sequencing, gene distribution and retrotransposon clusters. Funct. Integr. Genomics 3, 56–68.

    PubMed  CAS  Google Scholar 

  • Appleford, N.E.J., Evans, D.J., Lenton, J.R., Gaskin, P., Croker, S.J., Devos, K.M., Phillips, A.L. and Hedden, P. (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223(3), 568–582.

    PubMed  CAS  Google Scholar 

  • Appels, R., Francki, M. and Chibbar, R. (2003) Advances in cereal functional genomics. Funct. Integr. Genomics 3, 1–24.

    PubMed  CAS  Google Scholar 

  • Baik, B.K., Czuchajowska, Z. and Pomeranz, Y. (1995) Discoloration of dough for oriential noodles. Cereal Chem. 72, 198–205.

    CAS  Google Scholar 

  • Bailey, P.C., McKibbin, R.S., Lenton, J.R., Holdsworth, M.J., Flintham, J.E. and Gale, M.D. (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor. Appl. Genet. 98(2), 281–284.

    CAS  Google Scholar 

  • Barr, A.R., Karakousis, A., Lance, R.C.M., Logue, S.J., Manning, S., Chalmers, K.J., Kretschmer, J.M., Boyd, W.J.R., Collins, H.M., Roumeliotis, S., Coventry, S.J., Moody, D.B., Read, B.J., Poulsen, D., Li, C.D., Platz, G.J., Inkerman, P.A., Panozzo, J.F., Cullis, B.R., Smith, A.B., Lim, P. and Langridge, P. (2003) Mapping and QTL analysis of the barley population Chebec x Harrington. Aust. J. Agric. Res. 54, 1125–1130.

    CAS  Google Scholar 

  • Beccari, J.B. (1745) De Frumento. De Bononiensi Scientarium et Artium. Instituto atque Academia Commentarii. Bologna 2, 122–127.

    Google Scholar 

  • Bezant, H., Laurie, D.A., Pratchett, N., ChoJ.ecki, J. and Kearsey, M.J. (1997) Mapping of QTL controlling NIR predicted hot water extract and grain nitrogen content in a spring barley cross using marker-regression. Plant Breeding 116, 141–145.

    CAS  Google Scholar 

  • Bird, A.R., Flory, C., Davies, D.A., Usher, S. and Topping, D.L. (2004a) A novel barley cultivar (Himalaya 292) with a specific gene mutation in starch synthase IIa raises large bowel starch and short-chain fatty acids in rats. J. Nutr. (April) 134, 831–835.

    Google Scholar 

  • Bird, A.R., Jackson, M., King, R.A., Davies, D.A., Usher, S. and Topping, D.L. (2004b) A novel high-amylose barley cultivar (Hordeum vulgare var. Himalaya 292) lowers plasma cholesterol and alters indices of large-bowel fermentation in pigs. Br. J. Nutr. (October), 92, 607–615.

    Google Scholar 

  • Bonnardeaux, Y., Li, C., Lance, R., Zhang, X.Q., Sivasithamparam, K. and Appels, R. (2008) Seed dormancy in barley: identifying superior genotypes through incorporating epistatic interactions. Aust J. Agr. Res. 59, 517–526.

    Google Scholar 

  • Branlard, G., Dardevet, M., Amiour, N. and Igrejas, G. (2003) Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.). Genet. Reso. Crop Evol. 50, 669–679.

    Google Scholar 

  • Breseghello, F., Finney, P.L., Gaines, C., Andrews, L., Tanaka, J., Penner, G. and Sorrells, M.E. (2005) Genetic loci related to kernel quality differences between a soft and hard wheat cultivar. Crop Sci. 45, 1685–1695.

    CAS  Google Scholar 

  • Bucheli, C.S., Dry, I.B. and Robinson, S.M. (1996) Isolation of a full-length cDNA encoding polyphenol oxidase from sugarcane, a C4 grass. Plant Mol. Biol. 3, 1233–1238.

    Google Scholar 

  • Burton, R.A., Wilson, S.M., Hrmova, M., Harvey, A.J., Shirley, N.J., Medhurst, A., Stone, B.A., Newbigin, E.J., Bacic, A. and Fincher, G.B. (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science 311, 1940–1942.

    PubMed  CAS  Google Scholar 

  • Butow, B.J., Ma, W., Gale, K.R., Cornish, G.B., Rampling, L., Larroque, O.R., Morell, M.K. and Bekes, F. (2003) Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular weight glutenin allele has a major impact on wheat flour strength. Theor. Appl. Genet. 107, 1524–1532.

    PubMed  CAS  Google Scholar 

  • Caldwell, K.S., Langridge, P. and Powell, W. (2004) Comparative sequence analysis of the region harboring the hardness locus in barley and its colinear region in rice. Plant Physiol. 136, 3177–3190.

    PubMed  CAS  Google Scholar 

  • Cane, K., Spackman, M. and Eagles, H.A. (2004) Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Aust. J. Agric. Res. 55, 89–95.

    CAS  Google Scholar 

  • Cassidy, B.G., Dvorak, J. and Anderson, O.D. (1998) The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor. Appl. Genet. 96, 743–750.

    CAS  Google Scholar 

  • Chantret, N., Cenci, A., Sabot, F., Anderson, O. and Dubcovsky, J. (2004) Sequencing of the Triticum monococcum Hardness locus reveals good microcolinearity with rice. Mol. Genet. Gen. 271, 377–386.

    CAS  Google Scholar 

  • Chantret, N., Salse, J., Sabot, F., Rahman, S., Bellec, A., Laubin, B., Dubois, I., Dossat, C., Sourdille, P., J.oudrier, P., Gautier, M.F., Cattolico, L., Beckert, M., Aubourg, S., Weissenbach, J., Caboche, M., Bernard, M., Leroy, P. and Chalhoub, B. (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17, 1033–1045.

    PubMed  CAS  Google Scholar 

  • Chao, S., Sharp, P.J., Worland, A.J., Warham, E.J., Koebner, R.M.D. and Gale, M.D. (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromomsomes. Theor. Appl. Genet. 78, 495–504.

    CAS  Google Scholar 

  • Chen, J., Lan, P., Tarr, A., Yan, Y.M., Francki, M., Appels, R. and Ma, W. (2007) MALDI-TOF based wheat gliadin protein peaks are useful molecular markers for wheat genetic study. Rapid Comm. Mass Spectrom. 21, 2913–2917.

    CAS  Google Scholar 

  • Choulet, F., Wicker, T., Paux, E., Saintenac, C., Sourdille, P., Keller, B., Appels, R. and Feuillet, C. (2008) Plant and Animal Genome XVI Conference w278, www.intl-pag.org

  • Clarke, B.C., Hobbs, M., Skylas, D.J. and Appels, R. (2000) Genes active in developing endosperm. Funct. Integr. Genomics 1, 44–55.

    PubMed  CAS  Google Scholar 

  • Clarke, B.C., Larroque, O.R., Bekes, F. and Appels, D. (2001) The frequent classes of expressed genes in wheat endosperm tissue as possible sources of genetic markers. Aust. J. Agric. Res. 52, 1181–1193.

    CAS  Google Scholar 

  • Clarke, B.C., Phongkham, T., Gianibelli, M.C., Beasley, H. and Békés, F. (2003) The characterisation and mapping of a family of LMW-gliadin genes: effects on dough properties and bread volume. Theor. Appl. Genet. 106, 629–635.

    Google Scholar 

  • Cloutier, S., Rampitsch, C., Penner, G.A. and Lukow, O.M. (2001) Cloning and expression of a LMW-i glutenin gene. J. Cereal Sci. 33, 143–154.

    CAS  Google Scholar 

  • Collins, H.M., Panozzo, J.F., Logue, S.J., Jefferies, S.P. and Barr, A.R. (2003) Mapping and validation of chromosome regions associated with high malt extract in barley (Hordeum vulgare L.). Aust. J. Agric. Res. 54, 1223–1240.

    CAS  Google Scholar 

  • Cooper, M., Woodruff, D.R., Phillips, I.G., Basford, K.E. and Gilmour, A.R. (2001) Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Res. 69, 47–67.

    Google Scholar 

  • Cornish, G.B., Skylas, D.J., Siriamornpun, S., Bekes, F., Larroque, O.R., Wrigley, C.W. and Wootton, M. (2001) Grain proteins as markers of genetics traits in wheat. Aust. J. Agric. Res. 52, 1161–1171.

    CAS  Google Scholar 

  • Crosbie, G.B. (1991) The relationship between starch swelling properties, paste viscosity and boiled noodle quality in wheat flours. J. Cereal Sci. 13, 145–150.

    CAS  Google Scholar 

  • Crosbie, G.B., Solah, V.A., Chiu, P. and Lambe, W.J. (1996) Selection for improved color stability in noodles. In: C.W. Wrigley (Ed.), Proceedings of the Australian Cereal Chemistry Conference 46th, Sydney, Royal Australian Chemist Institute, North Melbourne, VIC, Australia, pp. 120–122.

    Google Scholar 

  • D’Ovidio, R. and Anderson, O.D. (1994) PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theor. Appl. Genet. 88, 759–763.

    Google Scholar 

  • D’Ovidio, R., Lafiandra, D. and Porceddu, E. (1996) Identification and molecular characterization of a large insertion within the repetitive domain of a high-molecular-weight glutenin subunit gene from hexaploid wheat. Theor. Appl. Genet. 93, 1048–1053.

    Google Scholar 

  • D’Ovidio, R. and Masci, S. (2004) The low-molecular-weight glutenin subunits of wheat gluten. J. Cereal Sci. 39, 321–339.

    Google Scholar 

  • D’Ovidio, R., Masci, S. and Porceddu, E. (1995) Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat. Theor. Appl. Genet. 91, 189–194.

    Google Scholar 

  • D’Ovidio, R., Porceddu, E. and Lafiandra, D. (1994) PCR analysis of genes encoding allelic variants of high-molecular-weight glutenin subunits at the Glu-D1 locus. Theor. Appl. Genet. 88, 175–180.

    Google Scholar 

  • De Bustos, A., Rubio, P. and Jouve, N. (2000) Molecular characterisation of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat. Theor. Appl. Genet. 100, 1085–1094.

    Google Scholar 

  • DePauw, R.M., Townley-Smith, T.F., Humphreys, G., Knox, R.E., Clarke, F.R. and Clarke, J.M. (2005) Lillian hard red spring wheat. Can. J. Plant Sci. 85, 397–401.

    Google Scholar 

  • Demeke, T. and Morris, C.F. (2002) Molecular characterization of wheat polyphenol oxidase (PPO). Theor. Appl. Genet. 104, 813–818.

    PubMed  CAS  Google Scholar 

  • Demeke, T., Morris, C.F., Campbell, K.G., King, G.E., Anderson, J.A. and Chang, H.-G. (2001) Wheat polyphenol oxidase distribution and genetic mapping in three inbred line populations. Crop Sci. 41, 1750–1757.

    CAS  Google Scholar 

  • Devos, K.M., Dubcovsky, J., Dvorák, J., Chinoy, C.N. and Gale, M.D. (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet. 91, 282–288.

    CAS  Google Scholar 

  • Devos, K.M., Ma, J., Pontaroli, A.C., Pratt, L.H. and Bennetzen, J.L. (2005) Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc. Natl. Acad. Sci. USA 102, 19243–19248.

    PubMed  CAS  Google Scholar 

  • Distelfeld, A., Cakmak, I., Peleg, Z., Ozturk, L., Yazici, A.M., Budak, H., Saranga, Y. and Fahima, T. (2007) Multiple QTL effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiologia Plantarum 129, 635–643.

    CAS  Google Scholar 

  • Druka, A., Muehlbauer, G., Druka, I., Caldo, R., Baumann, U., Rostoks, N., Schreiber, A., Wise, R., Close, T., Kleinhofs, A., Graner, A., Schulman, A., Langridge, P., Sato, K., Hayes, P., McNicol, J., Marshall, D. and Waugh, R. (2006) An atlas of gene expression from seed to seed through barley development. Funct. Integr. Genomics 6, 202–211.

    PubMed  CAS  Google Scholar 

  • Eagles, H.A., Eastwood, R.F., Hollamby, G.J., Martin, E.M. and Cornish, G.B. (2004) Revision of the estimates of glutenin gene effects at the Glu-B1 locus from southern Australian wheat breeding programs, Aust. J. Agric. Res. 55, 1093–1096.

    CAS  Google Scholar 

  • Eagles, H.A., Hollamby, G.J., Gororo, N.N. and Eastwood, R.F. (2002) Estimation and utilization of glutenin gene effects from the analysis of unbalanced data from wheat breeding programs. Aust. J. Agric. Res. 53, 367–377.

    CAS  Google Scholar 

  • Eglinton, J.K. (2003) Novel alleles from wild barley for breeding malting barley (Hordeum vulgare L.). PhD thesis, University of Adelaide.

    Google Scholar 

  • Eglinton, J.K., Langridge, P. and Evans, D.E. (1998) Thermostability variation in alleles of barley beta-amylase. J. Cereal Sci. 28, 301–309.

    CAS  Google Scholar 

  • Eliasson, A. and Larsson, K. (1993) Cereals in Breadmaking. Marcel Dekker, New York.

    Google Scholar 

  • Fabrizius, M.A., Cooper, M. and Basford, K.E. (1997) Genetic analysis of variation for grain yield and protein concentration in two wheat crosses. Aust. J. Agric. Res. 48, 605–614.

    Google Scholar 

  • Ferrante, P., Masci, S., D’Ovidio, R., Lafiandra, D., Volpi, C. and Mattei, B. (2006) A proteomic approach to verify in vivo expression of a novel γ-gliadin containing an extra cysteine residue. Proteomics 6, 1908–1914.

    PubMed  CAS  Google Scholar 

  • Finkelstein, R., Reeves, W., Ariizumi, T. and Steber, C. (2008) Molecular aspects of seed dormancy. Ann. Rev. Plant Biol. 59, 387–415.

    CAS  Google Scholar 

  • Finney, K.F., Yamazaki, W.T., Youngs, V.L. and Rubenthaler G.L. (1987) Quality of hard, soft, and durum wheats. In: E.G. Heyne (Ed.), Wheat and Wheat Improvement, 2nd ed., Agronomy Monograph 13. ASA, CSSA, and SSSA, Madison, WI, pp. 677–748.

    Google Scholar 

  • Flurkey, W.H. (1989) Polypeptide composition and amino-terminal sequence of broad bean polyphenoloxidase. Plant Physiol. 91, 481–483.

    PubMed  CAS  Google Scholar 

  • Fox, S.L., Townley-Smith, T.F., Humphreys, D.G., McCallum, B.D., Fetch, T.G., Gaudet, D.A., Gilbert, J.A., Menzies, J.G., Noll, J.S. and Howes, N.K. (2006) Somerset hard red spring wheat. Can. J. Plant Sci. 86, 163–167.

    Google Scholar 

  • Francki, M., Carter, M., Ryan, K., Hunter, A., Bellgard, M. and Appels, R. (2004) Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat. Funct. Integr. Genomics 4, 118–130.

    PubMed  CAS  Google Scholar 

  • Fu, D., Uauy, C., Blechl, A. and Dubcovsky, J. (2007) RNA interference for wheat functional gene analysis. Transgenic Res. 16, 689–701.

    PubMed  CAS  Google Scholar 

  • Gale, K.R. (2005) Diagnostic DNA markers for quality traits in wheat. J. Cereal Sci. 41, 181–192.

    CAS  Google Scholar 

  • Gali, J.V., Brown, C. and Wegener, M. (1998) The value of barley protein in livestock feeding in Queensland. Aust. Agribusiness J. 6, ISSN 1442-6951.

    Google Scholar 

  • Gao, S., Gu, Y.Q., Wu, J., Coleman-Derr, D., Huo, N., Crossman, C., Jia, J., Ren, Z., Anderson, O.D. and Kong, X. (2007) Rapid evolution and complex structural organization in genomics regions harboring multiple prolamin genes in the polyploid wheat genome. Plant Mol. Biol. 65, 189–203.

    PubMed  CAS  Google Scholar 

  • Gao, W., Clancy, J.A., Han, F., Prada, D., Kleinhoffs, A. and Ullrich, S.E. (2003) Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley. Theor. Appl. Genet. 107, 552–559.

    PubMed  CAS  Google Scholar 

  • Gautier, M.F., Aleman, M.E., Guirao, A., Marion, D. and Joudrier, P. (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and development gene expression. Plant Mol. Biol. 25, 43–57.

    PubMed  CAS  Google Scholar 

  • Ge, X.X., He, Z.H., Yang, J. and Zhang, Q.J. (2003) Polyphenol oxidase activities of Chinese winter wheat cultivars and correlations with quality characteristics. Acta Agronomica Sinica 29, 481–485.

    Google Scholar 

  • Gianibelli, M.C., Larroque, O.R., Macritchie, F. and Wrigley, C.W. (2001) Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal. Chem. 78, 635–646.

    CAS  Google Scholar 

  • Giroux, M.J. and Morris, C.F. (1997) A glycine to serine change in puroindoline b is associated with grain hardness and low levels of starch-surface friabilin. Theor. Appl. Genet. 95, 857–864.

    CAS  Google Scholar 

  • Giroux, M.J. and Morris, C.F. (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Natl. Acad. Sci. USA 95, 6262–6266.

    PubMed  CAS  Google Scholar 

  • Giroux, M.J., Talbert, L.E., Habernicht, D.K., Lanning, S.P., Hemphill, A. and Martin, J.M. (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci. 40, 370–374.

    CAS  Google Scholar 

  • Gobaa, S., Bancel, E., Kleijer, G., Stamp, P. and Branlard, G. (2007) Effect of the 1BL.1RS translocation on the wheat endosperm as revealed by proteomic analysis. Proteomics 7, 4349–4357.

    PubMed  CAS  Google Scholar 

  • Grando, S. (2002) Food barley gains long-overdue attention, http://www.icarda.org/Publications/Caravan/caravan16/focus/food.htm

  • Gras, P.W., Anderssen, R.S., Keentok, M., Bekes, F. and Appels, R. (2001) Gluten protein functionality in wheat flour processing: a review. Aust. J. Agric. Res. 53, 1311–1323.

    Google Scholar 

  • Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I. and Moore, G. (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752.

    PubMed  CAS  Google Scholar 

  • Groos, C., Bervas, E. and Charmet, G. (2004) Genetic analysis of grain protein content, grain hardness and dough rheology in a hard x hard bread wheat progeny. J. Cereal Sci. 40, 93–100.

    CAS  Google Scholar 

  • Gu, Y.Q., Kong, X., Luo, M., You, F.M., Coleman-Derr, D., Dubcovsky, J. and Anderson, O.D. (2004) Genomic organization of the complex alpha-gliadin loci in wheat. Theor. Appl. Genet. 109, 648–657.

    PubMed  CAS  Google Scholar 

  • Gu, Y.Q., Salse, J., Coleman-Derr, D., Dupin, A., Crossman, C., Lazo, G.R., Huo, N., Belcram, H., Ravel, C., Charmet, G., Charles, M., Anderson, O.D. and Chalhoub, B. (2006) Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 174, 1–12.

    Google Scholar 

  • Gupta, R.B. and MacRitchie, F. (1994) Allelic variation at the glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheats. II. Biochemical basis of the allelic effects on dough properties. J. Cereal Sci. 19, 19–29.

    CAS  Google Scholar 

  • Gupta, R.B. and Shepherd, K.W. (1990) Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. 1. Variation and genetic control of the subunits in hexaploid wheats. Theor. Appl. Genet. 80, 65–74.

    CAS  Google Scholar 

  • Hai, L., Yu, M.W., Ze, H.Y., Bernard, B., Eviatar, N. and You, L.Z. (2005) Classification of wheat low-molecular-weight glutenin sub-unit genes and its chromosome assignment by developing LMW-GS group-specific primers. Theor. Appl. Genet. 111, 1251–1259.

    Google Scholar 

  • Hamilton, D.M. and Lewis, M.J. (1974) Factors affecting wort extract and attenuation. MBAA Tech. Quart. 11, 31–35.

    CAS  Google Scholar 

  • Han, F., Ullrich, S.E., Clancy, J.A., Jitkov, V., Kilian, A. and Romagosa, I. (1996) Verification of barley seed dormancy loci via linked molecular markers. Theor. Appl. Genet. 92, 87–91.

    Google Scholar 

  • Han, F., Ullrich, S.E., Clancy, J.A. and Romagosa, I. (1999) Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Sci. 143, 113–118.

    CAS  Google Scholar 

  • Hattori, T., Vasil, V., Rosenkrans, L., Hannah, C., McCarty, D.R. and Vasil, I.K. (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Devel. 6, 609–618.

    PubMed  CAS  Google Scholar 

  • Hayes, P.M., Cerono, J., Witsenboer, H., Kuiper, M., Zabeau, M., Sato, K., Kleinhofs, A., Kudrna, D., Killian, A., Saghai-Maroof, M. and Hoffman, D. (1997) The Snorth American Barley Genome Mapping Project Characterizing and exploiting genetic diversity and quantitative traits in barley (Hordeum vulgare) using AFLP markers. J. Quant Trait Loci, http://probenalusda.gov.8000/other-docs/J.ql1997-02

    Google Scholar 

  • Hayes, P.M., Castro, A., Corey, A., Filichkin, T., Johnson, M., Rossi, C., Sandoval, S., Vales, I., Vivar, H.E. and Von Zitzewitz, J. (2001) In: H.E. Vivar and A. McNab (Eds.), Breeding Barley in the New Millennium. CIMMYT, Mexico, pp. 47–60.

    Google Scholar 

  • Hayes, P.M. and Iyamabo, O. (1994) The North American Barley Genome Mapping Project. Summary of QTL effects in the Steptoe x Morex population. Barley Genet. Newslttr. 23, 98–143.

    Google Scholar 

  • Hayes, P.M., Liu, B.H., Knapp, S.J., Chen, F., Jones, B., Blake, T., Franckowiak, J., Rasmusson, D., Sorrells, M., Ullrich, S.E., Wesenberg, D. and Kleinhofs, A. (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Genet. 87, 392–401.

    Google Scholar 

  • He, X.Y., He, Z.H., Zhang, L.P., Sun, D.J., Morris, C.F., Fuerst, E.P. and Xia, X.C. (2007a) Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor. Appl. Genet. 115, 47–58.

    Google Scholar 

  • He, X.Y., Zhang, Y.L., He, Z.H., Wu, Y.P., Xiao, Y.G., Ma, C.X. and Xia, X.C. (2007b) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor. Appl. Genet. 116, 213–221.

    Google Scholar 

  • Hejgaard, J., Rasmussen, S.K., Brandt, A. and Svendson, I. (1985) Sequence homology between barley endosperm protein Z and protease inhibitors of the α1-antitrypsin family. FEBS Lett. 180, 89–94.

    CAS  Google Scholar 

  • Hessler, T.G., Thomson, M.J., Benscher, D., Nachit, M.M. and Sorrells, M.E. (2002) Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci. 42, 1695–1700.

    CAS  Google Scholar 

  • Hobo, T., Kowyama, Y. and Hattori, T. (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc. Natl. Acad. Sci. USA 96, 15348–15353.

    PubMed  CAS  Google Scholar 

  • Howitt, C.A., Tamás, L., Solomon, R.G., Gras, P.W., Morell, M.K., Békés, F. and Appels, R. (2003) Modifying flour to target functionality to product attributes. In: S. Cauvain (Ed.), Bread Making: Improving Quality. Woodhead Publishing, Cambridge, UK, pp. 220–252.

    Google Scholar 

  • Hunter, P.J. and Borg, T.K. (2003) Integration from proteins to organs: the Physiome project. Nat. Rev. 4, 237–243.

    CAS  Google Scholar 

  • Igrejas, B., Gaborit, T., Oury, F., Chiron, H., Marion, D. and Branlard, G. (2002) Genetic and environmental effects on puroindoline-a and puroindoline-b content and their relationship to technological properties in French bread wheats. J. Cereal Sci. 34, 37–47.

    Google Scholar 

  • Ikeda, T.M., Araki, E., Fujita, Y. and Yano, H. (2006) Characterization of low-molecular-weight glutenin subunit genes and their protein products in common wheats. Theor. Appl. Genet. 112, 327–334.

    PubMed  CAS  Google Scholar 

  • Ikeda, T.M., Nagamine, T., Fukuoka, H. and Yano, H. (2002) Identification of new low-molecular-weight glutenin subunit genes in wheat. Theor. Appl. Genet. 104, 1432–1442.

    Google Scholar 

  • Jackson, E.A., Holt, L.M. and Payne, P.I. (1983) Characterisation of high-molecular-weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and chromosomal localisation of their controlling genes. Theor. Appl. Genet. 66, 29–37.

    CAS  Google Scholar 

  • Jackson, E.A., Holt, L.M. and Payne, P.I. (1985) Glu-B2, a storage protein locus controlling the D group of LMW glutenin subunits in bread wheat. Genet. Res. 46, 11–17.

    CAS  Google Scholar 

  • Jimenez, M. and Dubcovsky, J. (1999) Chromosome location of genes affecting polyphenol oxidase activity in seeds of common and durum wheat. Plant Breeding 118, 395–398.

    CAS  Google Scholar 

  • Joppa, L.R., Du, C., Hart, G.E. and Hareland, G.A. (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci. 37, 1586–1589.

    CAS  Google Scholar 

  • Juhász, A., Gárdonyi, M., Tamás, L. and Bedõ, Z. (2003) Characterisation of the promoter region of Glu-1Bx7 gene from overexpressing lines of an old Hungarian wheat variety. Proceedings of the Xth International Wheat Genetics Symposium, 1–6 September 2003, Paestum, Italy, pp. 1348–1350.

    Google Scholar 

  • Jukanti, A.K., Bruckner, P.L. and Fischer, A.M. (2004) Evaluation of wheat polyphenol oxidase genes. Cereal Chem. 81, 481–485.

    CAS  Google Scholar 

  • Karakousis, A., Barr, A.R., Chalmers, K.J., Ablett, G.A., Holton, T.A., Henry, R.J., Lim, P. and Langridge, P. (2003a) Potential of SSR markers for plant breeding and variety identification in Australian barley germplasm. Aust. J. Agric. Res. 54, 1197–1210.

    Google Scholar 

  • Karakousis, A., Barr, A.R., Kretschmer, J.M., Manning, S., Logue, S.J., Roumeliotis, S., Collins, H.M., Chalmers, K.J., Li, C.D., Lance, R.C.M. and Langridge, P. (2003b) Mapping and QTL analysis of the barley population Galleon x Haruna Nijo. Aust. J. Agric. Res. 54, 1131–1135.

    Google Scholar 

  • Kasarda, D.D. (1994) Defining cereals toxicity in coeliac disease. In: C. Feighery and F. OFarrelly (Eds.), Gastrointestinal Immunology and Gluten-Sensitive Disease. Oak Tree Press, Dublin, pp. 203–220.

    Google Scholar 

  • Kasarda, D.D., Tao, H.P., Evans, P.K., Adalsteins, A.E. and Yuen, S.W. (1988) Sequencing of protein from a single spot of a 2-D gel pattern: N-terminal sequence of a major wheat LMW-glutenin subunit. J. Exp. Bot. 39, 899–906.

    CAS  Google Scholar 

  • Khan, M.A., Hussain, I. and Baloch, M.S. (2000) Wheat yield potential current status and future strategies. Pak. J. Bio. Sci. 3, 82–86.

    Google Scholar 

  • Kleinhofs, A. and Han, F. (2002) Molecular mapping of the barley genome. In: G.A. Slafer, J.L. Molina-Cano, R. Savin, J.L. Araus and I. Romagosa (Eds.), Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality. Food Products Press, New York, pp. 31–63.

    Google Scholar 

  • Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, G., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T. and Yano, M. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 104, 1424–1429.

    PubMed  CAS  Google Scholar 

  • Kong, X., Gu, Y.Q., You, F.M., Dubcovsky, J. and Anderson, O.D. (2003) Dynamics of the evolution of orthologous and paralogous portions of a complex locus regions in two genomes of allopolyploid wheat. Plant Mol. Biol. 54, 56–69.

    Google Scholar 

  • Konik, C.M. and Miskelly, D.M. (1992) Contribution of starch and non-starch parameters to the eating quality of Japanese white salted noodles. J. Sci. Food Agric. 58, 403–406.

    CAS  Google Scholar 

  • Konik-Rose, C., Thistleton, J., Chanvrier, H., Tan, I., Halley, P., Gidley, M., Kosar-Hashemi, B., Wang, H., Larroque, O., Ikea, J., Mcmaugh, S., Regina, A., Rahman, S., Morell, M. and Li, Z. (2007) Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat. Theor. Appl. Genet. 115, 1053–1065.

    PubMed  CAS  Google Scholar 

  • Kruger, J.E., Anderson, M.H. and Dexter, J.E. (1994a) Effect of flour refinement on raw Cantonese noodle color and texture. Cereal Chem. 71, 177–182.

    Google Scholar 

  • Kruger, J.E., Hatcher, D.W. and DePauw, R. (1994b) A whole seed assay for polyphenol oxidase in Canadian prairie spring wheats and its usefulness as a measure of noodle darkening. Cereal Chem. 71, 324–326.

    Google Scholar 

  • Lafiandra, D., D’Ovidio, R., Porceddu, E., Margiotta, B. and Colaprico, G. (1993) New data supporting high Mr glutenin subunit 5 as determinant of qualitative differences in the pairs 5+10 vs 2+12. J. Cereal Sci. 18, 197–205.

    CAS  Google Scholar 

  • Lee, S.C., Cheng, H., King, K.E., Wang, W.F., He, Y.W., Hussain, A., Lo, J., Harberd, N.P. and Peng, J.R. (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16(5), 646–658.

    PubMed  CAS  Google Scholar 

  • Lei, Z.S., Gale, K.R., He, Z.H., Gianibelli, M.C., Larroque, O., Xia, X.C., Butow, B.J. and Ma, W.J. (2006) Y-type gene specific markers for enhanced discrimination of high-molecular-weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J. Cereal Sci. 43, 94–101.

    CAS  Google Scholar 

  • Lerouxel, O., Cavalier, D.M., Liepman, A.H. and Keegstra, K. (2006) Biosynthesis of plant cell wall polysaccharides – a complex process. Curr. Opin. 9, 621–630.

    CAS  Google Scholar 

  • Lew, E.J.L., Kuzmicky, D.D. and Kasarda, D.D. (1992) Characterization of low molecular weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem. 69, 508–515.

    CAS  Google Scholar 

  • Li, C., Ni, P., Francki, M., Hunter, A., Zhang, Y., Schibeci, D., Li, H., Tarr, A., Wang, J., Cakir, M., Yu, J., Bellgard, M., Lance, R. and Appels, R. (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct. Integr. Genomics 4, 84–93.

    PubMed  CAS  Google Scholar 

  • Lindsay, M.P. and Skerritt, J.H. (2000) The glutenin macropolymer of wheat flour doughs structure-function perspectivies. Trends Food Sci. Technol. 10, 247–253.

    Google Scholar 

  • Liu, C.Y. and Shepherd, K.W. (1995) Inheritance of B subunits of glutenin and ÏŽ- and γ-gliadins in tetraploid wheats. Theor. Appl. Genet. 90, 1149–1157.

    CAS  Google Scholar 

  • Liu, Z., Yan, Z., Wan, Y., Liu, K., Zheng, Y. and Wang, D. (2003) Analysis of HMW glutenin subunits and their coding sequences in two Aegilops species. Theor. Appl. Genet. 106, 1368–1378.

    PubMed  CAS  Google Scholar 

  • Ma, W., Zhang, W. and Gale, K.R. (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134, 51–60.

    CAS  Google Scholar 

  • Ma, W.Q. (1999) Current status and evaluation of crop fertilization in Shandong Province. Ph.D. Thesis (in Chinese), China Agricultural University, Beijing, p. 116.

    Google Scholar 

  • Ma, Y., Eglinton, J.K., Evans, D.E., Logue, S.J. and Langridge, P. (2000) Removal of the four C-terminal glycine-rich repeats enhances thermostability and substrate binding affinity of barley β-amylase. Biochemistry 39, 13350–13355.

    PubMed  CAS  Google Scholar 

  • Ma, Y.F., Evans, D.E., Logue, S.J. and Langridge, P. (2001) Mutations of barley β-amylase that improve its thermostability and substrate-binding affinity. Mol. Gen. Genet. 266, 345–352.

    CAS  Google Scholar 

  • MacGregor, A.W., Bazin, S.L., Macri, L.J. and Babb, J.C. (1999) Modelling the contribution of alpha-amylase, beta-amylase and limit dextrinase to starch degradation during mashing. J. Cereal Sci. 29, 161–169.

    CAS  Google Scholar 

  • MacGregor, A.W., LaBerge, D.E. and Meredith, O.S. (1971) Changes in barley kernels during growth and maturation. Cereal Chem. 48, 255–269.

    CAS  Google Scholar 

  • Macritchie, F., du Cros, D.L. and Wrigley, C.W. (1990) Flour polypeptides related to wheat quality. Adv. Cereal Sci. Technol. 10, 79–145.

    CAS  Google Scholar 

  • Mantovani, M.S., Bellini, M.F., Angeli, J.P.F., Oliveira, R.J., Silva, A.F. and Ribeiro, L.R. (2008) β-Glucans in promoting health: prevention against mutation and cancer. Mutat. Res.-Rev. Mutat. 658, 154–161.

    CAS  Google Scholar 

  • Mares, D.J. and Mrva, K. (2001) Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat. Aust. J. Agric. Res. 52, 1257–1265.

    CAS  Google Scholar 

  • Marquez-Cedillo, L.A., Hayes, P.M., Jones, B.L., Kleinhofs, A., Legge, W.G., Rossnagel, B.G., Sato, K., Ullrich, S.E. and Wesenberg, D.M. (2000) QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor. Appl. Genet. 101, 173–184.

    CAS  Google Scholar 

  • Martin, J.M., Frohberg, R.C., Morris, C.F., Talbert, L.E. and Giroux, M.J. (2001) Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci. 41, 228–234.

    CAS  Google Scholar 

  • Martinant, J.P., Cadalen, T., Billot, A., Chartier, S., Leroy, P., Bernard, M., Saulnier, L. and Branlard, G. (1998) Genetic analysis of water-extractable arabinoxylans in bread wheat endosperm. Theor. Appl. Genet. 97, 1069–1075.

    CAS  Google Scholar 

  • Massa, A.N., Beecher, B. and Morris, C.F. (2007) Phenol oxidase (PPO) in wheat and wild relatives: molecular evidence for a multigene family. Theor. Appl. Genet. 114, 1239–1247.

    PubMed  CAS  Google Scholar 

  • Mather, D.E., Tinker, N.A., La Berge, D.E., Edney, M., J.ones, B.L., Rossnagel, B.G., Legge, W.G., Briggs, K.G., Irvine, R.B., Falk, D.E. and Kasha, K.J. (1997) Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci. 37, 544–554.

    CAS  Google Scholar 

  • Mattern, P.J., Morris, R., Schmidt, J.W. and Johnson, V.A. (1973) Location of genes for kernal properties in wheat variety ‘Cheyenne’ using chromosome substitution lines. Proceedings of the 4th International Wheat Genetics Symposium, Columbia, Missouri, USA, pp. 803–708.

    Google Scholar 

  • McIntosh, R.A., Yamazaki, Y., Devos, K.M., Dubcovsky, J., Rogers, W.J. and Appels, R. (2003) Catalogue of gene symbols for wheat (MacGene 2003) [CD-ROM]. In: N.E. Pogna et al. (Eds.), Proceedings of the 10th International Wheat Genetics Symposium, Vol. 4, 1–6 September 2003, Pasetum, Italy. Istituto Sperimentale per la Cerealicoltura, Rome, Italy.

    Google Scholar 

  • McKibbin, R.S., Wilkinson, M.D., Bailey, P.C., Flintham, J.E., Andrew, L.M., Lazzeri, P.A., Gale, M.D., Lenton, J.R. and Holdsworth, M.J. (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proc. Natl. Acad. Sci. USA 99, 10203–10208.

    PubMed  CAS  Google Scholar 

  • Mclauchlan, A., Ogbonnaya, F.C., Hollingsworth, B., Carter, M., Gale, K.R., Henry, R.J., Holten, T.A., Morell, M.K., Rampling, L.R., Sharp, P.J., Shariflou, M.R., J.ones, M.G.K. and Appels, R. (2001) Development of PCR-based DNA markers for each homoeo-allele of granule-bound starch synthase and their application in wheat breeding programs. Aust. J. Agric. Res. 52, 1409–1416.

    CAS  Google Scholar 

  • Meyer, F.D., Talbert, L.E., Martin, J.M., Lanning, S.P., Greene, T.W. and Giroux, M.J. (2007) Field evaluation of transgenic wheat expressing a modified Adp-glucose pyrophosphorylase large subunit. Crop Sci. 47, 336–342.

    CAS  Google Scholar 

  • Miles, M.J., Carr, H.J., McMaster, T.C., I’Anson, K.J., Belton, P.S., Morris, V.J., Field, J.M., Shewry, P.R. and Tatham, A.S. (1991) Scanning tunneling microscopy of a wheat storage protein reveals details of an unusual super-secondary structure. Proc. Natl. Acad. Sci. USA 88, 68–71.

    PubMed  CAS  Google Scholar 

  • Miskelly, D.M. and Moss, H.J. (1985) Flour quality requirements for Chinese noodle manufacture. J. Cereal Sci. 3, 379–387.

    Google Scholar 

  • Morell, M., Kosar-Hashemi, B., Samuel, M.S., Chandler, P., Rahman, A., Buleon, A., Batey, I. and Li, Z. (2003) Identification of the molecular basis of mutations at the barley Sex6 locus and their novel starch phenotype. Plant J. 33, 1–13.

    Google Scholar 

  • Morell, M.K. and Myers, A.M. (2005) Rational design of cereal starches. Curr. Opin. Plant Biol. 8, 204–210.

    PubMed  CAS  Google Scholar 

  • Morris, C.F. (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol. 48, 633–647.

    Google Scholar 

  • Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S. and Nagamine, T. (1995) Production of waxy (amylose-free) wheats. Mol. Gen. Genet. 248, 253–259.

    PubMed  CAS  Google Scholar 

  • Oberthur, L., Blake, T.K., Dyer, W.E. and Ullrich, S.E. (1995) Genetic analysis of seed dormancy in barley (Hordeum vulgare L.). J. Quant Trait Loci, http://www.ncgr.org/jag/

  • Oda, M., Yasuda, Y., Okazaki, S., Yamauchi, Y. and Yokoyama, Y. (1980) A method of flour quality assessement for Japanese noodles. Cereal Chem. 57, 253–254.

    CAS  Google Scholar 

  • Okita, T.W., Cheesbrough, V. and Reeves, C.D. (1985) Evolution and heterogeneity of the α-/β-type and γ-type gliadin DNA sequences. J. Biol. Chem. 260, 8203–8213.

    PubMed  CAS  Google Scholar 

  • Okot-Kotber, M., Liavoga, A., Yong, K.J. and Bagorogoza, K. (2002) Activation of polyphenol oxidase in extracts of bran from several wheat (Triticum aestivum) cultivars using organic solvents, detergents, and chaotropes. J. Agric. Food Chem. 50, 2410–2417.

    PubMed  CAS  Google Scholar 

  • Osborne, T.B. (1907) The Protein of the Wheat Kernel. Publication No. 84. Carnegie Institute, Washington, DC.

    Google Scholar 

  • Ozdemir, N. and Cloutier, S. (2005) Expression analysis and physical mapping of low-molecular-weight glutenin loci in hexaploid wheat (Triticum aestivum L.). Genome 48, 401–410.

    PubMed  CAS  Google Scholar 

  • Oziel, A., Hayes, P.M., Chem, F.Q. and Jones, B. (1996) Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breeding 115, 43–51.

    CAS  Google Scholar 

  • Palotta, M.A., Asayama, S., Reinheimer, J.M., Davies, P.A., Barr, A.R., Jeffries, S.P., Chalmers, K.J., Lewis, J., Collins, H.M., Roumeliotis, S., Logue, S.J., Coventry, S.J., Lance, R.C.M., Karakousis, A., Lim, P., Verbyla, A.P. and Eckermann, P.J. (2003) Mapping and QTL analysis of the barley population Amagi Nijo x W12585. Aust. J. Agric. Res. 54, 1141–1144.

    Google Scholar 

  • Panozzo, J.F. and McCormick, K.M. (1993) The rapid viscoanalyzer as a method of testing for noodle quality in a wheat breeding programme. J. Cereal Sci. 17, 25–32.

    Google Scholar 

  • Park, W.J., Shelton, D.R., Peterson, C.J., Martin, T.J., Kachman, S.D. and Wehling, R.L. (1997) Variation in polyphenol oxidase activity and quality characteristics among hard white wheat and hard red winter wheat samples. Cereal Chem. 74, 7–11.

    CAS  Google Scholar 

  • Parker, G.D., Chalmers, K.J., Rathjen, A.J. and Langridge, P. (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor. Appl. Genet. 97, 238–245.

    CAS  Google Scholar 

  • Payne, P.I., Corfield, K.G. and Blackman, J.A. (1981) Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J. Sci. Food Agric. 32, 51–60.

    CAS  Google Scholar 

  • Payne, P.I., Holt, L.M., J.ackson, E.A. and Law, C.N. (1984) Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos. Trans. R. Soc. Lond. B 304, 359–371.

    CAS  Google Scholar 

  • Payne, P.I. and Lawrence, G.J. (1983) Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for the high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11, 29–35.

    Google Scholar 

  • Payne, P.I., Nightingale, M.A., Krattiger, A.F. and Holt, L.M. (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 40, 51–65.

    CAS  Google Scholar 

  • Pitts, E.G., Rafalski, J.A. and Hedgcoth, C. (1988) Nucleotide sequence and encoded amino-acid sequence of a genomic gene region for a low-molecular-weight glutenin. Nucleic Acids Res. 16, 11376.

    PubMed  CAS  Google Scholar 

  • Potokina, E., Prasad, M., Malysheva, L., Roeder, M.S. and Graner, A. (2006) Expression genetics and haplotype analysis reveal cis regulation of serine carboxypeptidase I (Cxp1), a candidate gene for malting quality in barley (Hordeum vulgare L.). Funct. Integr. Genomics 6, 25–35.

    PubMed  CAS  Google Scholar 

  • Potokina, E., Sreenivasulu, N., Altschmied, L., Mickalek, W. and Graner, A. (2002) Differential gene expression during seed germination in barley (Hordeum vulgare L.). Funct. Integr. Genomics 2, 28–39.

    PubMed  CAS  Google Scholar 

  • Powell, W., Thomas, W.T.B., Baird, E., Lawrence, P., Booth, A., Harrower, B., McNicol, J.W. and Waugh, R. (1997) Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79, 48–59.

    CAS  Google Scholar 

  • Pozniak, C.J., Knox, R.E., Clarke, F.R. and Clarke, J.M. (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor. Appl. Genet. 114, 525–537.

    PubMed  CAS  Google Scholar 

  • Prada, D., Ullrich, S.E., Molina-Cano, J.L., Cistue, L., Clancy, J.A. and Romagosa, I. (2004) Genetic control of dormancy in a Triumph/Morex cross in barley. Theor. Appl. Genet. 109, 62–70.

    PubMed  CAS  Google Scholar 

  • Prasad, M., Kumar, N., Kulwal, P.L., Röder, M., Balyan, H.S., Dhaliwal, H.S. and Gupta, P.K. (2003) QTL analysis for grain protein content using SSR markers and validation of associated markers using NILs in bread wheat. Theor. Appl. Genet. 106, 659–667.

    PubMed  CAS  Google Scholar 

  • Radovanovic, N. and Cloutier, S. (2003) Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Mol. Breeding 12, 51–59.

    CAS  Google Scholar 

  • Rahman, S., Bird, A., Regina, A., Li, Z., Ral, J.P., Mcmaugh, S., Topping, D. and Morell, M. (2007) Resistant starch in cereals: exploiting genetic engineering and genetic variation. J. Cereal Sci. 46, 251–260.

    CAS  Google Scholar 

  • Raman, R., Raman, H. and Martin, P. (2007) Functional gene markers for polyphenol oxidase locus in bread wheat (Triticum aestivum L.). Mol. Breeding 19, 315–328.

    CAS  Google Scholar 

  • Ravel, C., Nagy, I.J., Martre, P., Sourdille, P., Dardevet, M., Balfourier, F., Pont, C., Giancola, S., Praud, S. and Charmet, G. (2006) Single nucleotide polymorphism, genetic mapping and expression of genes coding for the DOF wheat prolamin-box binding factor. Funct. Integr. Genomics 6, 310–321.

    PubMed  CAS  Google Scholar 

  • Regina, A., Bird, A., Topping, D., Bowden, S., Freeman, J., Barsby, T., Kosar-Hashemi, B., Li, Z., Rahman, S. and Morell, M.K. (2006) High amylose wheat generated by RNA-interference improves indices of large bowel health in rats. Proc. Nat. Acad. Sci. USA 103, 3546–3551.

    PubMed  CAS  Google Scholar 

  • Regina, A., Kosar-Hashemi, B., Li, Z., Rampling, L., Cmiel, M., Gianibelli, M.C., Konik-Rose, C., Larroque, O., Rahman, S. and Morell, M.K. (2004) Multiple isoforms of starch branching enzyme-I in wheat: lack of the major SBE-I isoform does not alter starch phenotype. Funct. Plant Biol. 31, 591–601.

    CAS  Google Scholar 

  • Röder, M.S., Huang, X-Q. and Börner, A. (2007) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct. Integr. Genomics 8, 79–86.

    PubMed  Google Scholar 

  • Sabelli, P.A. and Shewry, P.R. (1991) Characterization and organization of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor. Appl. Genet. 83, 209–216.

    Google Scholar 

  • Sakulsingharoj, C., Choi, S.B., Hwang, S.K., Edwards, G.E., Bork, J., Meyer, C.R., Preiss, J. and Okita, T.W. (2004) Engineering starch biosynthesis for increasing rice seed weight: the role of the cytoplasmic Adp-glucose pyrophosphorylase. Plant Sci. 167, 1323–1333.

    CAS  Google Scholar 

  • Sasaki, T., Yasui, T. and Matsuki, J. (2000) Effect of amylase content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 77, 58–63.

    CAS  Google Scholar 

  • Shewry, P.R. and Casey, R. (Eds.). (1999) Seed Proteins. Kluwer, Dordrecht, pp. 1–10.

    Google Scholar 

  • Shewry, P.R. and Halford, N.G. (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53, 947–958.

    PubMed  CAS  Google Scholar 

  • Shewry, P.R., Halford, N.G. and Lafiandra, D. (2003) The genetics of wheat gluten proteins. In: J.C. Hall, J.C. Dunlap and T. Friedman (Eds.), Advances in Genetics, Vol. 49. Academic Press, San Diego, pp. 111–184.

    Google Scholar 

  • Shewry, P.R., Halford, N.G. and Tatham, A.S. (1989) The high molecular weight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role of wheat gluten structure and functionality. In: B.J. Miflin (Ed.), Oxford Surveys of Plant Molecular and Cell Biology, Vol. 6. Oxford University Press, Oxford, pp. 163–219.

    Google Scholar 

  • Shewry, P.R., Halford, N.G. and Tatham, A.S. (1992) High-molecular-weight subunits of wheat glutenin. J. Cereal Sci. 15, 105–120.

    CAS  Google Scholar 

  • Shewry, P.R. and Morell, M. (2001) Manipulating cereal endosperm structure, development and composition to improve end-use properties. In: P.R. Shewry, P.A. Lazzeri, and K.J. Edwards (Eds.), Advances in Botanical Research, Vol. 34. Academic Press, San Diego, San Francsico, New York, Boston, London, Sydney, Tokyo, pp. 165–236.

    Google Scholar 

  • Shewry, P.R. and Tatham, A.S. (1997) Disulphide bonds in wheat gluten proteins. J. Cereal Sci. 25, 135–146.

    Google Scholar 

  • Shogren, M.D., Hashimota, S. and Pomeranz, Y. (1987) Cereal pentosans: their estimation and significance. II. Pentosans and breadmaking characteristics of hard red winter wheat flours. Cereal Chem. 64, 35–41.

    CAS  Google Scholar 

  • Simmonds, D.H. (1989) Inherent quality factors in wheat. Wheat and Wheat Quality in Australia. Australian Wheat Board, pp. 31–61.

    Google Scholar 

  • Singh, N.K., Shepherd, K.W. and Cornish, G.B. (1991) A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 14, 203–208.

    Google Scholar 

  • Skylas, D.J., Copeland, L., Rathmell, W.G. and Wrigley, C.W. (2001) The wheat-grain proteome as a basis for more efficient cultivar identification Proteomics 1, 1542–1546.

    CAS  Google Scholar 

  • Slade, A.J., Fuerstenberg, S.I., Loeffler, D., Steine, M.N. and Facciotti, D.A. (2005) Reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat. Biotechnol. 23, 75–81.

    PubMed  CAS  Google Scholar 

  • Smith, R.L., Schweder, M.E., Barnett, R.D. (1994) Identification of glutenin alleles in wheat and triticale using PCR-generated DNA markers. Crop Sci. 34, 1373–1378.

    Google Scholar 

  • Sourdille, P., Perretant, M.R., Charmet, G., Leroy, P., Gautier, M.F., Joudrier, P., Nelson, J.C., Sorrells, M.E. and Bernard, M. (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor. Appl. Genet. 93, 580–586.

    CAS  Google Scholar 

  • Sreeramulu, G. and Singh, N.K. (1997) Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L.). Genome 40, 41–48.

    PubMed  CAS  Google Scholar 

  • Sugiyama, T., Rafalski, A. and Söll, D. (1986) The nucleotide sequence of A wheat gamma-gliadin genomic clone. Plant Sci. 44, 205–209.

    CAS  Google Scholar 

  • Sun, D.J., He, Z.H., Xia, X.C., Zhang, L.P., Morris, C.F., Appels, R., Ma, W.J. and Wang, H. (2005) A novel STS marker for polyphenol oxidase activity in bread wheat. Mol. Breeding 16, 209–218.

    CAS  Google Scholar 

  • Sun, X., Hu, S., Liu, X., Qian, W., Hao, S., Zhang, A. and Wang, D. (2006) Characterization of the HMW glutenin subunits from Aegilops searsii and identification of a novel variant HMW glutenin subunit. Theor. Appl. Genet. 113, 631–641.

    PubMed  CAS  Google Scholar 

  • Susuki, M., Ketterling, M.G., Li, Q-B. and McCarty, D.R. (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol. 132, 1664–1677.

    Google Scholar 

  • Symes, K.J. (1965) The inheritance of grain hardness in wheat as measured by the particle size index. Aust. J. Agric. Res. 16, 113–123.

    Google Scholar 

  • Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., Kanamori, H., Kawasaki, S. and Takeda, K. (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. USA 105, 4062–4067.

    PubMed  CAS  Google Scholar 

  • Tao, H.P. and Kasarda, D.D. (1989) Two-dimensional gel mapping and N-terminal sequencing of LMW-glutenin subunits. J. Exp. Bot. 40, 1015–1020.

    CAS  Google Scholar 

  • Tatham, A.S., Miflin, B.J. and Shewry, P.R. (1985) The beta-turn conformation in wheat gluten proteins: relationship to gluten elasticity. Cereal Chem. 62, 405–442.

    CAS  Google Scholar 

  • Thipyapong, P., Joel, D.M. and Steffens, J.C. (1997) Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol. 113, 707–718.

    PubMed  CAS  Google Scholar 

  • Thomas, W.T.B., Powell, W., Swanston, J.S., Ellis, R.P., Chalmers, K.J., Barua, U.M., Jack, P., Lea, V., Forster, B.P., Waugh, R. and Smith, D.B. (1996) Quantitative trait loci for germination and malting quality characters in a spring barley cross. Crop Sci. 36, 265–273.

    Google Scholar 

  • Topping, D. (2007) Cereal complex carbohydrates and their contribution to human health. J. Cereal Sci. 46, 220–229.

    CAS  Google Scholar 

  • Topping, D.L., Morell, M.K., King, R.A., Li, Z., Bird, A.R. and Noakes, M. (2003) Resistant starch and health – Himalaya 292, a novel barley cultivar to deliver benefits to consumers. Starke 55, 539–545.

    CAS  Google Scholar 

  • Turner, A.S., Bradburne, R.P., Fish, L. and Snape, J.W. (2004) New quantitative trait loci influencing grain texture and protein content in wheat. J. Cereal Sci. 40, 51–60.

    CAS  Google Scholar 

  • Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. and Dubcovsky, J. (2006) A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science 314, 1298–1301.

    PubMed  CAS  Google Scholar 

  • Udall, J. (1997) Important alleles for noodle quality in winter wheat as identified by molecular markers. M.S. Thesis, University of Idaho, Moscow, ID.

    Google Scholar 

  • Udall, J.A., Souza, E., Anderson, J., Sorrells, M.E. and Zemetra, R.S. (1999) Quantitative trait loci for flour viscosity in winter wheat. Crop Sci. 39, 238–242.

    CAS  Google Scholar 

  • Ullrich, S.E., Han, F. and Jones, B.L. (1997) Genetic complexity of the malt extract trait in barley suggested by QTL analysis. J. Am. Soc. Brew. Chem. 55, 1–4.

    CAS  Google Scholar 

  • van Heel, D.A. and West, J. (2006) Recent advances in coeliac disease. Gut 55, 1037–1046.

    PubMed  Google Scholar 

  • Varghese, J.P., Struss, D. and Kazman, M.E. (1996) Rapid screening of selected European winter wheat varieties and segregating populations for the Glu-D1d allele using PCR. Plant Breeding 115, 451–454.

    Google Scholar 

  • Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X. and Close, T.J. (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct. Integr. Genomics 6, 143–156.

    PubMed  CAS  Google Scholar 

  • Wall, J.S. (1979) The role of wheat proteins in determining baking quality. In: D.L. Laidman and R.G. Wyn Jones (Eds.), Recent Advances in the Biochemistry of Cereals. Academic Press, New York, pp. 275–311.

    Google Scholar 

  • White, C.L., Staines, V.E. and Staines, M.H. (2007) A review of the nutritional value of lupins for dairy cows. Aust. J. Agric. Res. 58, 185–202.

    CAS  Google Scholar 

  • Wicker, T., Yahiaoui, N., Guyot, R., Schlagenhauf, E., Liu, Z.D., Dubcovsky, J. and Keller, B. (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15, 1186–1197.

    PubMed  CAS  Google Scholar 

  • Wieser, H. (2007) Chemistry of gluten proteins. Food Microbiol. 24, 115–119.

    PubMed  CAS  Google Scholar 

  • Wrigley, C.W., Bushuk, W. and Gupta, R. (1996) Nomenclature: establishing a common gluten language. In: C.W. Wrigley (Ed.), Gluten 96. RACI, Melbourne, Australia, pp. 403–407.

    Google Scholar 

  • Yamamori, M., Fujita, S., Hayakawa, K., Matsuki, J. and Yasui, T. (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theor. Appl. Genet. 101, 21–29.

    CAS  Google Scholar 

  • Yoshigi, N., Okada, Y., Maeba, H., Sahara, H. and Tamaki, T. (1995) Construction of a plastid used for the expression of a seven-fold mutant barley β-amylase with thermostability in Escherichia coli and properties of the sevenfold mutant β-amylase. J. Biochem. 118, 562–567.

    PubMed  CAS  Google Scholar 

  • Zhang, L.P., Ge, X.X., He, Z.H., Wang, D.S., Yan, J., Xia, X.C. and Sutherland, M.W. (2005) Mapping QTLs for polyphenol oxidase activity in a DH population from common wheat. Acta Agronomica Sinica 31, 7–10.

    Google Scholar 

  • Zhang, W. and Dubcovsky, J. (2008) Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor. Appl. Genet. 116, 635–645.

    PubMed  CAS  Google Scholar 

  • Zhang, W., Gianibelli, M.C., Rampling, L. and Gale, K.R. (2004) Characterisation and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 108, 1409–1419.

    PubMed  CAS  Google Scholar 

  • Zhao, X.C., Batey, I.L., Sharp, P.J., Crosbie, G., Barclay, I., Wilson, R., Morell, M.K. and Appels, R. (1996) A single genetic locus associated with starch granule and noodle quality in wheat. J. Cereal Sci. 27, 7–13.

    Google Scholar 

  • Zhao, X.L., Xia, X.C., He, Z.H., Gale, K.R., Lei, Z.S., Appels, R. and Ma, W. (2006) Characterization of three low-molecular-weight Glu-D3 subunit genes in common wheat. Theor. Appl. Genet. 113(7), 1247–1259.

    PubMed  CAS  Google Scholar 

  • Zhao, X.L., Xia, X.C., He, Z.H., Lei, Z.S., Appels, R., Yang, Y., Sun, Q.X. and Ma, W. (2007) Novel DNA variations to characterize low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theor. Appl. Genet. 114(3), 451–460.

    PubMed  CAS  Google Scholar 

  • Zolla, L., Rinalducci, S., Timperio, A.M. and Huber, C. (2002) Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem I. Plant Physiol. 130, 1938–1950.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ma, W. et al. (2009). Genomics of Quality Traits. In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_21

Download citation

Publish with us

Policies and ethics