Skip to main content

The Ins and Outs of Host Recognition of Magnaporthe oryzae

  • Chapter

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kumar, S.P., 1997, Signaling in plant-microbe interactions, Science 276:26–733.

    Article  Google Scholar 

  • Ballance, J., 1991, Transformation systems for filamentous fungi and an overview of fungal gene structure, in S. A. Leong and R. Berka, eds., Molecular Industrial Mycology: Systems and Applications for Filamentous Fungi, Marcel Dekker, New York, pp. 1–29.

    Google Scholar 

  • Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C., and Eddy, S.R., 2004, The Pfam protein families database, Nucleic Acids Res. 32(Database issue):D138–D141.

    Article  PubMed  CAS  Google Scholar 

  • Becraft, P.W., 1998, Receptor kinases in plant development, Trends Plant Sci. 3:384–388.

    Article  Google Scholar 

  • Bennetzen, J.L., and Freeling, M., 1993, Grasses as a single genetic system: genome composition, collinearity and compatibility, Trends Genet 9:259–260.

    Article  PubMed  CAS  Google Scholar 

  • Bisgrove, S.R., Simonich, M.T., Smith, N.M., Sattler, A., and Innes, R.W., 1994, A disease resistance gene in Arabadopsis with specificity for two different pathogen avirulence genes, Plant Cell 6:927–933.

    Article  PubMed  CAS  Google Scholar 

  • Böhnert, H.U., Fudal, I. Dioh, W., Tharreau, D., Notteghem, J.L., and Lebrun, M.H., 2004, A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice, Plant Cell 16:2499–2513.

    Article  PubMed  Google Scholar 

  • Bonman, M., 1998, Rice disease management: industry approaches and perspectives. Abstract 3.6.7S of the International Congress on Plant Pathology, Edinburgh.

    Google Scholar 

  • Bonman, M., Khush, G.S., and Nelson, R.J., 1992, Breeding rice for resistance to pests, Annu. Rev. Phytopathol. 30:507–528.

    Article  Google Scholar 

  • Boyes, D.C., Nam, J., and Dangl, J.L., 1998, The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response, Proc. Natl. Acad. Sci. USA 95:15849–15854.

    Article  PubMed  CAS  Google Scholar 

  • Bryan, G.T., Wu, K.S., Farrall, L., Jia, Y.L., Hershey, H.P., McAdams, S.A., Faulk, K.N., Donaldson, G.K., Tarchini, R., and Valent, B., 2000, A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta, Plant Cell 12:2033–2045.

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B., and Kleinhofs, A., 2002, The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases, Proc. Natl. Acad. Sci. USA 299:9328–9333.

    Article  CAS  Google Scholar 

  • Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S., and Cerami, A., 1986, Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA molecules specifying inflammatory mediators, Proc. Natl. Acad. Sci. USA 83:1670–1674.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan, R.S., Farman, M.L., Zhang, H.-B., and Leong, S.A., 2002, Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), Corresponding to AVR1-CO39 of Magnaporthe grisea, Mol. Genet. Genomics 267:603–612.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Wang, S., Xing, Y., Xu, C., Hayes, P.M., and Zhang, Q., 2003, Comparative analyses of genomic location of specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley, Proc. Natl. Acad. Sci. USA 100:2544–2549.

    Article  PubMed  CAS  Google Scholar 

  • Coaker, G., Falick, A., and Staskawicz, B., 2005, Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin, Science 308:548–550.

    Article  PubMed  CAS  Google Scholar 

  • Couch, B.C., Fudal, I., Lebrun, M-H., Tharreau, D., Valent, B., van Kim, P., Notteghem, J.-L., and Kohn, L. M., 2005., Origins of host-specific populations of the blast pathogen, Magnaporthe oryzae, in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice, Genetics 170:613–630.

    Google Scholar 

  • Couch, B.C., and Kohn, L.M., 2002, A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea, Mycologia, 94:683–693.

    Article  CAS  Google Scholar 

  • Dangl, J.L., Ritter, C., Gibbon, M.J., Mur, L.A.J., Wood, J.R., Goss, S., Mansfield, J., Taylor, J.D., and Vivian, A., 1992, Functional homologs of the Arabadopsis RPM1 disease resistance gene in bean and pea, Plant Cell 4:1359–1369.

    Article  PubMed  CAS  Google Scholar 

  • Devos, K.M., 2005, Updating the ‘crop circle,’ Curr. Opin. Plant Biol. 8:155–162.

    Article  PubMed  CAS  Google Scholar 

  • Dobinson, K., Harris, R., and Hamer, J.E., 1993, Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea, Mol. Plant Microbe Interact. 6:114–126.

    PubMed  CAS  Google Scholar 

  • Ellingboe, A., 1992, Segregation of avirulence/virulence on three rice cultivars in 16 crosses of Magnaporthe grisea, Phytopathology 82:597–601.

    Article  Google Scholar 

  • Farman, M.L., Eto, Y., Nakao, Y., Tosa, Y., Nakayashiki, H., Mayama, S., and Leong, S.A., 2002, Analysis of the structure of the Avr1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea, Mol. Plant Microbe Interact. 15:6–16.

    Google Scholar 

  • Farman, M.L., and Leong, S.A., 1995, Physical and genetic mapping of telomeres of Magnaporthe grisea, Genetics 140:479–492.

    PubMed  CAS  Google Scholar 

  • Farman, M.L., and Leong, S.A., 1998, Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps, Genetics 150:1049–1058.

    PubMed  CAS  Google Scholar 

  • Farman, M.L., Tosa, Y., Nitta, N., and Leong, S.A., 1996, MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea, Mol. Gen. Genet. 251:665–674.

    PubMed  CAS  Google Scholar 

  • Flor, H.H., 1955. Host-parasite interaction in flax rust: Its genetics and other implications, Phytopathology 45:680–685.

    Google Scholar 

  • Fritz-Laylin, L.K., Krishnamurthy, N., Tor, M., Sjolander, K.V., and Jones, J.D.G., 2005, Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis, Plant Physiol. 138:611–623.

    Article  PubMed  CAS  Google Scholar 

  • Godiard, L., Sauviac, L., Torri, K.U., Grenon, O., Mangin, B., Griimsley, N.H., and Marco, Y., 2003, ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt, Plant J. 36:353–365.

    Article  PubMed  CAS  Google Scholar 

  • Grant, M.R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R.W., and Dangl, J.L., 1995, Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance, Science 269:843–846.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K.E., Staskawicz, B.J., Jones, J.D.G., and Baulcombe, D.C., 1994, Functional expression of a fungal avirulence gene from a modified potato virus X genome, Mol. Plant Microbe Interact. 8:181–185.

    Google Scholar 

  • Holt, B.F., Belkahdir, Y., and Dangl, J.L., 2005, Antagonistic control of disease resistance protein stability in the plant immune system, Science 309:929–932.

    Article  PubMed  CAS  Google Scholar 

  • Huntington, J.A., 2006, Shape-shifting serpins – advantages of a mobile mechanism, Trends Biochem. Sci. 31:427–435.

    Article  PubMed  CAS  Google Scholar 

  • Innes, R.W., Bisgrove, S.R., Smith, N.M., Bent, A.F., Staskawicz, B.J., and Liu,Y-C., 1993, Identification of a disease resistance locus in Arabidopsis that is functionally homologous to the RPG1 locus of soybean, Plant J 4:813–820.

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project, 2005, The map-based sequence of the rice genome, Nature 436:793–800.

    Article  CAS  Google Scholar 

  • Ishikawa, M., Janda, M., Krol, M.A., and Ahlquist, P., 1997, In vivo DNA expression of functional brome mosaic virus RNA replicons in Saccharomyces cerevisiae, J. Virology. 71:7781–7790.

    PubMed  CAS  Google Scholar 

  • Jia, Y., 2007, Plants and pathogens engage in trench warfare-knowledge learned from natural variation of rice blast resistance gene Pi-ta. Abstract PAGXV, San Diego, CA, January 2007.

    Google Scholar 

  • Jia, Y., Bryan, G.T., Farrall, L., and Valent, B., 2003, Natural variation at the Pi-ta rice blast resistance locus, Phytopathology 93:1452–1459.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., and Valent, B., 2000, Direct interaction of resistance gene and avirulence gene products confers rice blast resistance, EMBO J. 19:4004–4014.

    Article  PubMed  CAS  Google Scholar 

  • Kachroo, P., Leong, S.A., and Chattoo, B.B., 1994, Pot2, an inverted repeat transposon from the rice blast fungus Magnaporthe grisea, Mol. Gen. Genet. 245:339–348.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S., Sweigard, J., and Valent, B., 1995, The PWL host-species specificity gene family in the blast fungus Magnaporthe grisea, Mol. Plant Microbe Interact. 8:939–948.

    PubMed  CAS  Google Scholar 

  • Kato, H., 1983, Responses of Italian millet, oat, timothy, Italian ryegrass and perennial ryegrass to Pyricularia species isolated form cereals and grasses, Proc. Kanto-Tosan Plant Protect. Soc. 30:22–23.

    Google Scholar 

  • Kato, H., Yamamoto, M., Yamaguchi-ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., Tosa, Y., Mayama, S., and Mori, N., 2000, Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants, J. Gen. Plant Pathol. 66:30–47.

    Article  CAS  Google Scholar 

  • Keller, H., Pamboukdjian, N., Ponchet, M., Poupet, A., Delon, R., Verrier, J.L., Roby, D., and Ricci, P., 1999, Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance, Plant Cell 11:223–235.

    Google Scholar 

  • Koga, H., 1994, Hypersensitive death, autofluorescence, and ultrastructural changes in cells of leaf sheaths of susceptible and resistant near isogenic lines of rice (Pi-z t) in relation to penetration and growth of Pyricularia grisea, Can. J. Bot. 72:1463–1477.

    Article  Google Scholar 

  • Koizumi, S. 1998, New fungicide use on rice in Japan. Abstract 5.6.3S of the International Congress on Plant Pathology, Edinburgh.

    Google Scholar 

  • Kruger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., Mulder, L., and Jones, J.D., 2002, A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of auto-necrosis, Science 296:744–747.

    Article  PubMed  Google Scholar 

  • Lavashina, E.A., Langley, E., Green, C., Gubb, D., Ashburner, M., and Hoffmann, J.A., 1999, Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila, Science 285:1917–1919.

    Article  Google Scholar 

  • Lazarro, D., 2003, Characterization of the AVR1-CO39 Locus of Magnaporthe grisea. Master’s Thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Leister, D., Kurth, J., Laurie, D.A., Yano, M., Sasaki, T., Devos, K., Graner, A., and Schulze- Lefert, P., 1998, Rapid reorganization of resistance gene homologues in cereal genomes, Proc. Natl. Acad. Sci. USA 95:370–375.

    Google Scholar 

  • Leister, R.T., Ausubel, F.M., and Katagiri, F., 1996, Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1, Proc. Natl. Acad. Sci. USA 93:15497–15502.

    Article  PubMed  CAS  Google Scholar 

  • Leung, H., Borromeo, E.S., Bernardo, M.A., and Notteghem, J.L., 1988, Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea, Phytopathology 78:1227–1233.

    Article  Google Scholar 

  • Mackill, D., and Bonman, J.M., 1986, New hosts of Pyricularia grisea, Plant Dis. 70:125–127.

    Article  Google Scholar 

  • McDowell, J.M., and Dangl, J.L., 2000, Signal transduction in the plant immune response, Trends Plant Sci. 25:79–82.

    CAS  Google Scholar 

  • Meyers, B.C., Dickerman, A.W., Michelmore, R.W., Sivaramakrishnan, S., Sobral, B.W., and Young, N.D., 1999, Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily, Plant J. 20:317–332.

    Article  PubMed  CAS  Google Scholar 

  • Miki, D., Itoh, R., and Shimamoto, K., 2005, RNA silencing of single and multiple members in a gene family of rice, Plant Physiol. 138:1903–1913.

    Article  PubMed  CAS  Google Scholar 

  • Miki, D., and Shimamoto, K., 2004, Simple RNAi vectors for stable and transient suppression of gene function in rice, Plant Cell Physiol. 45:490–495.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, H., and Krogh, A., 1998, Prediction of signal peptides and signal anchors by a hidden Markov model, Proc.Sixth Int. Conf. Int. Syst.Mol. Biol. (ISMB 6), AAAS Press, Menlo Park, California, pp. 122–130.

    Google Scholar 

  • Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G., 1997, Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites, Protein Eng. 10:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Nimchuk, Z., Rohmer, L., Chang, J.H., and Dangl, J.L., 2001, Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host and pathogen, Curr. Opin. Plant Biol. 4:288–294.

    Article  PubMed  CAS  Google Scholar 

  • Nitta, N., Farman, M., and Leong, S.A., 1997, Genome organization of Magnaporthe grisea: Integration of genetic maps, clustering of transposable elements, and identification of genome duplications and rearrangements, Theor. Appl. Genet. 95:20–32.

    Article  CAS  Google Scholar 

  • Orbach, M.J., Farrall, L., Sweigard, J.A., Chumley, F.G., and Valent, B., 2000, A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta, Plant Cell 12:2019–2032.

    Article  PubMed  CAS  Google Scholar 

  • Peyyala, R., and Farman, M.L., 2006, Magnaporthe oryzae isolates causing grey leaf spot of perennial ryegrass possess a functional copy of the AVRI-CO39 avirulence gene, Mol. Plant Pathol. 7:157–165.

    Article  CAS  Google Scholar 

  • Rice Consortium Consortiums for Sequencing Rice Chromosomes 11 and 12, 2005, The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biology http://www.biomedcentral.com/1741-7007/3/20.

    Google Scholar 

  • Rojo, E., Sharma, V.K., Kovaleva, V.K., Kovaleva, V., Raikhel, N.V., and Flectecher, J.C., 2002, CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway, Plant Cell 14:969–977.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, M., Goggin, F.L., Milligan, S.B., Kaloshian, I., Ullman, D.E., and Williamson, V.M., 1998, The nematode resistance gene Mi of tomato confers resistance against the potato aphid, Proc. Natl. Acad. Sci. USA 95:9750–9754.

    Article  PubMed  CAS  Google Scholar 

  • Rouf Mian, M.A., Zwonitzer, J.C., Hopkins, A.A., Ding, X.S., and Nelson, R.S., 2005, Response of tall fescue genotypes to a new strain of Brome Mosaic Virus, Plant Dis. 89:224–227.

    Article  Google Scholar 

  • Sakamoto, K., Tada, Y., Yokozeki, Y., Akagi, H., Hayashi, N., Fujimura, T., and Ichikawa, N., 1999, Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats, Plant Mol. Biol. 40:847–855.

    Article  PubMed  CAS  Google Scholar 

  • Silue, D., Tharreau, D., and Notteghem, J.L., 1992a, Evidence for a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem, Phytopathology 82:577–580.

    Article  Google Scholar 

  • Silue, D., Tharreau, D., and Notteghem, J.L., 1992b, Identification of Magnaporthe grsiea avirulence genes to seven rice cultivars, Phytopathology 82:1462–1467.

    Article  Google Scholar 

  • Skinner, D.Z., Budde, A., Farman, M., Smith, R., Leung, H., and Leong, S.A., 1993, Genetic map, molecular karyotype and occurrence of repeated DNAs in the rice blast fungus Magnaporthe grisea, Theor. Appl. Genet. 87:545–557.

    Article  CAS  Google Scholar 

  • Smith, J.R., and Leong, S.A., 1994, Mapping of a Magnaporthe grisea locus affecting rice (Oryza sativa) cultivar specificity, Theor. Appl. Genet. 88:901–908.

    Article  CAS  Google Scholar 

  • Solomon, M., Belenghia, B., Delledonneb, M., Menachema, E., and Levine, A., 1999, The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants, Plant Cell 11:431–444.

    Article  PubMed  CAS  Google Scholar 

  • Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim, H.-S., Pi, L.-Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., Fauquet, C., and Ronald, P., 1995, A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21, Science 270:1804–1806.

    Article  PubMed  CAS  Google Scholar 

  • Sweigard, J.A., Carroll, A.M., Kang, S., Farrall, L., Chumley, F.G., and Valent, B., 1995, Identification, cloning and characterization of PWL2, a gene for host species specificity in the rice blast fungus, Plant Cell 7:1221–1233.

    Article  PubMed  CAS  Google Scholar 

  • Tai, T.H., Dahlbeck, D., Clark, E.T., Gajiwala, P., Pasion, R., Whalen, M.C., Stall, R.E., and Staskawicz, B.J., 1999, Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato, Proc. Natl. Acad. Sci. USA 96:14153–14158.

    Article  PubMed  CAS  Google Scholar 

  • Tang, H., Zakaria, K., Lemaitre, B., and Hashimoto, C., 2006, Two proteases defining a melanization cascade in the immune system of Drosophila, J. Biol. Chem. 281:28097–28104.

    Article  PubMed  CAS  Google Scholar 

  • Tang, X., Frederick, R.D., Zhou, J., Halterman, D.A., Jia, Y., and Martin, G.B., 1996, Physical interaction of AvrPto and Pto Kinase, Science 274:2060–2063.

    Article  PubMed  CAS  Google Scholar 

  • Tosa, Y., Osue, J., Eto, Y., Tamba, H., Tanaka, K., Nakayashiki, H., Mayama, S., and Leong, S.A., 2005, Evolution of an avirulence gene AVR1-CO39 concomitant with the evolution and differentiation of Magnaporthe oryzae, Mol. Plant Microbe Interact. 18:1148–1160.

    Article  PubMed  CAS  Google Scholar 

  • Valent, B., and Chumley, F.G., 1994, Avirulence genes and mechanisms of genetic instability in the rice blast fungus, in R. Zeigler, S. A. Leong, and P. Teng, eds., Rice Blast Disease, CABI, London, pp. 111–134.

    Google Scholar 

  • Valent, B., Crawford, M.S., Weaver, C.G., and Chumley, F.G., 1986, Genetic studies of fertility and pathogenicity in Magnaporthe grisea (Pyricularia grisea), Iowa State J. Res. 60:569–594.

    Google Scholar 

  • Valent, B., Farrall, L., and Chumley, F., 1991, Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses, Genetics 127:87–101.

    PubMed  CAS  Google Scholar 

  • Van den Ackerveken, G.F., Van, J.M., Kan, J.A.L., and DeWit, P.G.M., 1992, Molecular analysis of the avirulence gene avr9 of the fungal pathogen Cladesporium fulvum fully supports the gene-for-gene hypothesis, Plant J. 2:359–366.

    Article  Google Scholar 

  • Van der Vossen, E.A.G., Rouppe van der Voort, J.N.A.M., Kanyuka, K., Bendahmane, A., Sandbrink, H., Baulcombe, D.C., Bakker, J., Striekema, W.J., and Klein-Lankhorst, R.M., 2000, Homologues of a single resistance gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode, Plant J. 23:567–576.

    Google Scholar 

  • Wang, Z.X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., Katayose, Y., and Sasaki, T., 1999, The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes, Plant J. 19:55–64.

    Article  PubMed  Google Scholar 

  • Whitham, S., McCormick, S., and Baker, B., 1996, The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato, Proc. Natl. Acad. Sci. USA 93:8776–8781.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, S., Calis, O., Patrick, E., Zhang, G., Charoenwattana, P., Muskett, P., Parker, J.E., and Turner, J.G., 2005, The atypical resistance gene, RPW8, recruits components of basal defense for powdery mildew resistance in Arabidopsis, Plant J. 42:95–110.

    Article  PubMed  CAS  Google Scholar 

  • Yaegashi, H., 1978, Inheritance of pathogenicity in crosses of Pyricularia isolates from weeping lovegrass and finger millet, Ann. Phytopathol. Soc. Jpn 44:626–632.

    Google Scholar 

  • Yaegashi, H., and Asaga, K., 1981, Further studies on the inheritance of pathogenicity in crosses of Pyricularia grisea with Pyricularia sp. from finger millet, Ann. Phytopathol. Soc. Jpn 47:677–679.

    Google Scholar 

  • Yoshimura, S., Yamanouchi, U., Katayose, Y., Toki, S., Wang, Z.X., Kono, I., Kurata, N., Yano, M., Iwata, N., and Sasaki, T., 1998, Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation, Proc. Natl. Acad. Sci. USA 95:1663–1668.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leong, S.A. (2008). The Ins and Outs of Host Recognition of Magnaporthe oryzae . In: Gustafson, J., Taylor, J., Stacey, G. (eds) Genomics of Disease. Stadler Genetics Symposia Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76723-9_15

Download citation

Publish with us

Policies and ethics