Skip to main content

Synthesis and Commercial Preparation of Food Emulsifiers

  • Chapter
Food Emulsifiers and Their Applications

Food emulsifiers, more correctly referred to as surfactants, are molecules, which contain a nonpolar, and one or more polar regions. In general, nonpolar groups are aliphatic, alicyclic, or aromatic hydrocarbons. Polar functional groups contain heteroatoms such as oxygen, nitrogen, and sulfur. As shown in Fig. 2.1, the polar functionality makes the emulsifier anionic, cationic, amphoteric, or nonionic. Anionic surfactants contain a negative charge on the bulky molecule, associated with a small positive counterion. Cationics have a positively charged molecule with a negative counterion. Amphoteric surfactants contain both positive and negative charges on the same molecule. A nonionic surfactant contains no formal positive or negative charge, but a polar heteroatom produces a dipole with an electron dense and electron-depleted region.

Many synthetic emulsifiers have been used in the food industry without evidence of harmful effects. Their chemistry is derived from over 150 years of chemical manipulation of fats and oils (Polouze and Gelis, 1844). They have been designed to contain naturally occurring molecules or in the case of non-naturally occurring molecules, to pass through the body without being metabolized. For example, cleavage of polyglycerol esters results in a fatty acid, which is metabolized, and a polyglycerol backbone, which passes through the digestive system without being absorbed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akoh, C. and Swanson, B. G. (1994). Carbohydrate Polyesters as Fat Substitutes. New York: Marcel Dekker.

    Google Scholar 

  • Allen, R. R. and Campbell, R. L. (1967). Process for the Manufacture of Fatty Acid Esters. U. S. 3, 313, 834, Anderson Clayton & Co.

    Google Scholar 

  • Anon (1981). Sodium Stearoyl 2-Lactylate. India 148301, Council for Scientific and Industrial Research India: 13.

    Google Scholar 

  • Aoi, N. (1995). Preparation of Fatty Acid Esters of Fractionated Polyglycerin Esters as Emulsifiers. HCAPLUS 124:185549. Japan 07218560A, Toiyo Kogaku KK.

    Google Scholar 

  • Aracil Mira, J. A. E. (2000). Producing Fatty Acid Esters of Diacetyltartaric Acid Using Biocatalysis. Spain ES2146162, Universidad Complutense.

    Google Scholar 

  • Arcos, J. A. et al. (2000). Continuous Enzymatic Esterification of Glycerol With (Poly) Unsaturated Fatty Acids in a Packed Bed Reactor. Biotechnol. Bioeng. 68(5): 563–70.

    Article  CAS  Google Scholar 

  • Bade, V. (1978). Process for the Manufacture of Citric Acid Esters of Partial Fatty Acid Glycerides. U.S. 4, 071, 544.

    Google Scholar 

  • Belitz, H. D., Grosch, W., and Schienberle, P. (2004a). Food Chemistry. Berlin: Springer. 178–179.

    Google Scholar 

  • Belitz, H. D., Grosch, W., and Schienberle, P. (2004b). Food Chemistry. Berlin: Springer. 331–2.

    Google Scholar 

  • Brumley, W. C. et al. (1985). Characterization of Polysorbates by OH-Negative Ion Chemical Ionization Mass Spectrometry. J. Agric. Food Chem. 33(3): 368, 72.

    Article  CAS  Google Scholar 

  • Cawley, C. and O’Grady, M. (1969). Preparation of Monoglyceride Phosphoric Acid and Salts Thereof. U.S. 3, 423, 440.

    Google Scholar 

  • Charlemange, D. and Legoy, M. D. (1995). Enzymic Synthesis of Polyglycerol Fatty Acid Esters in a Solvent-free System. J. Am. Oil Chem. Soc. 72(1): 61–5.

    Article  Google Scholar 

  • Charles, G. et al. (2003). Preparation of Diglycerol and Triglycerol via Direct Polymerization of Glycerol with Basic Mesoporous Catalysts. Oleagineux Corps Gras Lipides 19(1): 74–82.

    Google Scholar 

  • Deger, H. M. et al. (1988). Carbohydrate Fatty Acid Esters, a Method for Their Preparation. HCAPLUS 111:134679. German DE 639878 A1, Hoechst, A. G.

    Google Scholar 

  • Dong, Q. Q. et al. (1982). Lipids 17(11): 798–802.

    Article  Google Scholar 

  • Elsner, A. et al. (1989). Synthesis and Characterization of Sucrose Fatty Acid Polyesters. Nahrung 33(9): 845–51.

    CAS  Google Scholar 

  • Eng, S. (1972). Producing Lactylic Acid Esters of Fatty Acids. U.S. 3, 636, 017, Glyco, Inc.

    Google Scholar 

  • Esbuis, C. R. V. et al. (1994). Polymerization of Glycerol Using Zeolite Catalysts. PCT Int. Appl. WO 9418256, Unichema Chemie B. V. Neth.

    Google Scholar 

  • Franzke, C. and Kroll, J. (1980). Nahrung 24(1): 89–90.

    Article  CAS  Google Scholar 

  • Freund, E. H. (1968). Composition Comprising Succinyl Half Esters. U. S. 3, 370, 958, National Dairy Products Co.

    Google Scholar 

  • Furuya, N. et al. (1992). Stabilization of Polyoxyethylene Sorbitan Esters. HCAPLUS 117:152184. Japan JP 04108781 A2, Nippon Yushi, K. K.

    Google Scholar 

  • Garti, N. and Asarin, A. (1983). J. Am. Oil Chemists Soc. 60(6): 1151–4.

    Article  CAS  Google Scholar 

  • Giacometi, J. et al. (1995). Monitoring the Esterification of Sorbitol and Fatty Acids by Gas Chromatography. J. Chromatogr. A 704(2): 535–9.

    Article  Google Scholar 

  • Gladstone, C. (1960). Process of Preparing Esters of Acetyl Tartaric and Citric Acids. U. S. 2, 938, 027, Witco Chemical Co.

    Google Scholar 

  • Griffin, W. C. (1945). U.S. 2, 380, 166.

    Google Scholar 

  • Gu, K. (2002). Study on Solvent Fractionation of Soybean Lecithin. Zhongguo Youzhi 27(1): 31–3.

    CAS  Google Scholar 

  • Guillard, V. et al. (2004). Edible Acetylated Monoglycerid E Films: Effect of Film-forming Technique on Moisture Barrier Properties. J. Am. Oil Chem. Soc. 81(11): 1053–8.

    Article  CAS  Google Scholar 

  • Ha, J. H. et al. (1987). Optimum Conditions to Esterify Alginic Acid. Hanlguk Susan Hakoechi 20(3): 202–7.

    CAS  Google Scholar 

  • Hadeball, K. et al. (1986). Synthesis and Properties of Succinylated Monoglycerides. Nahrung 30(2): 209–11.

    Article  CAS  Google Scholar 

  • Hari-Krishna, S. and Karanth, N. (2002). Lipase and Lipase-catalyzed Esterification Reactions in Nonaqueous Media. Cat. Rev. 44(4): 499.

    Article  Google Scholar 

  • Hasenhuettl, G. L. (1999a). Synthesis and Commercial Preparation of Surfactants for the Food Industry. In F. D. Gunstone (ed.), Lipid Synthesis and Manufacture. Sheffield: Academic Press. p. 391.

    Google Scholar 

  • Hasenhuettl, G. L. (1999b). Synthesis and commercial preparation of surfactants for the food industry. In F. D. Gunstone (ed.), Lipid Synthesis and Manufacture. p. 392. CRC Press.

    Google Scholar 

  • Hasenhuettl, G. L. (1999c). Synthesis and commercial preparation of surfactants for the food industry. In F. D. Gunstone (ed.), Lipid Synthesis and Manufacture. p. 394. CRC Press.

    Google Scholar 

  • Heidt, M. et al. (1996). Studies on the Enantioselectivity in Lipase Synthesis of Monoacylglycerols From the iIopropylidene Glycerol. Biotechnol. Tech. 10(1): 25–30.

    Article  CAS  Google Scholar 

  • Hibino, H. et al. (1989). Preparation of Lysophosphatidylcholine by Acylation of Glycerophosphocholine. HCAPLUS 112:217462. Japan JP 01311088 A2, Nippon Oil & Fats Co.

    Google Scholar 

  • Hibino, H. et al. (1991). Hydrolysis of Synthetic Phosphatidycholine with Phospholipase A2. HCAPLUS. Japan JP 03007589 A2, Mippon Oil & Fats Co.

    Google Scholar 

  • Hoq, M. M. et al. (1985). Some Characteristics of Continuous Glyceride Synthesis by Lipase in a Microporous Hydrophobic Biomembrane Reator. Agric. Biol. Chem. 49(2): 335–42.

    CAS  Google Scholar 

  • Huang, E.-C. et al. (2000). Kinetic Study on the Synthesis of Sucrose Esters. Zhengzhou Gongye Daxue Xuebao 21(4): 4–6.

    CAS  Google Scholar 

  • Israelachvili, J. (1992). Thermodynamic Principles of Self-Assembly. in Intermolecular and Surfaces Forces. London: Academic Press, 341–94.

    Google Scholar 

  • Jakobson, G. et al. (1989). Preparation of Nonionic Surfactant Comprising Esters of Polyglycerol and Their Use in Emulsions. HCA PLUS 113:99881. German DE 3818293 A1, Deutsche-Solvay-Werke G.M.b.H.

    Google Scholar 

  • Kasori, Y. et al. (1995). Preparation of Polyglycerin Fatty Acid Esters at Controlled Temperatures. HCAPLUS 123:14329. Japan JP 071451, Mitsubishi Kagaku KK.

    Google Scholar 

  • Kasori, Y. and Taktabagai, T. (1997). Preparation of Fatty Acid Sucrose Esters for Foods. HCAPLUS 127:176658. Japan JP 09188690 A2, Mitsubishi Chemical Industries Ltd.

    Google Scholar 

  • Kazyulima, M. I. et al. (1986). Production of Phosphorous Containing Emulsifiers. Maslo-Zhir. Prom-st. 8: 22–3.

    Google Scholar 

  • Li, Y.-K. et al. (2003). Enzyme-catalyzed Regioselective Synthesis of Sucrose Esters. Yoppp Huaxue 23(8): 770–5.

    Google Scholar 

  • Lim, S. et al. (2002). Design Issues of Pervaporation Membrane Reactors for Esterification: Membrane Bioreactor Design and Kinetic Model for Reaction Engineering and Simulation: A Review. Chem. Eng. Science 57(22–23): 4943–6.

    Google Scholar 

  • Marquez-Alvarez, C. et al. (2004). Solid Catalysis for the Synthesis of Esters of Glycerol, Polyglycerols and Sorbitol from Renewable Resources. Top. Catal. 27: 105–17.

    Article  CAS  Google Scholar 

  • Masashi, S. et al. (2005). Method for Producing Phospholipid. U. S.6, 170, 476A.

    Google Scholar 

  • McDowell, R. H. (1970). New Reactions of Propylene Glycol Alginate. J. Soc. Cosmet. Chem. 21: 441–57.

    CAS  Google Scholar 

  • McDowell, R. H. (1975). New Developments in the Chemistry of Alginates and Their Use in Foods. Chem. Ind. 9: 391–5.

    Google Scholar 

  • Meszaros, G. Y. et al. (1989). Synthesis of Esters of Polyols and Fatty Acids with Soap as Emulsifiers. HCA PLUS 111:216308. Europe EP 323670 A2, Unilever N.V, Unilever PLC.

    Google Scholar 

  • Montiero, J. B. et al. (2003). Lipase-catalyzed Synthesis of Monoacylglycerol in a Homogeneous System. Biotechnol. Letters 25(8): 641–4.

    Article  Google Scholar 

  • Morgado, M. A. et al. (1995). Hydrolosis of Lecithin by Phospholipase A2 in Mixed Reversed Micelles. J. Chem. Technol. Biotechnol. 63(2): 181–9.

    Article  CAS  Google Scholar 

  • Murakama, C. et al. (1989). Shokuhin Easeigaku Zasshi 30(4): 306–13.

    Google Scholar 

  • Nakamura, T. et al. (1986). Sucrose Fatty Acid Esters—Reaction at Atmospheric Pressure. Inf. Int. 18(37): 8–13.

    CAS  Google Scholar 

  • Nielsen, V. et al. (1971). Propylene Glycol Alginate. German DE 204, 6966.

    Google Scholar 

  • Noto, V. H. and Pettitt, D. J. (1972). Propylene Glycol Alginate. German DE 2641303, Merck & Company: DE 2641303.

    Google Scholar 

  • Okumura, H. et al. (2001). Determination of Sucrose Fatty Acid Esters by High Performance Liqyud Chromatography. J. Oleo Sci. 50(4), 249–54.

    CAS  Google Scholar 

  • Palacios, L. E. and Wang, T. (2005). Egg-yolk Lipid Fractionation and Lecithin Characterization. J. Am. Oil Chem. Soc. 82(8): 571–8.

    Article  CAS  Google Scholar 

  • Paolucci-Jeaniean, D. (2005). Biomolecule Applications for Membrane-based Phase Contacting Systems. Chem. Eng. Res. Des. 83(A3): 302–8.

    Article  Google Scholar 

  • Patterson, V. D. E. et al. (1984). Continuous Synthesis of Glycerides by Lipase in a Microporous Membrane Bioreactor. Ann. N.Y. Acad. Sci. 434: 558–68.

    Article  Google Scholar 

  • Polouze, J. and Gelis, A. (1844). Ann. Chem. Phys. 10: 434.

    Google Scholar 

  • Ranny, M. et al. (1989). Manufacture of Phosphorylated Mono- and Diacylglycerols for Use as Food Emulsifiers. HCAPLUS: 111:193383. Czechoslovakia CS 256691 B1, Czechoslovakia.

    Google Scholar 

  • Reynolds, R. C. and Chappel, C. J. (1998). Sucrose Acetate Isobutyrate (SAIB): Historical Aspects of Its Use in Beverages and a Review of Toxicity Studies Prior to 1988. Food Chem. Toxicol. 36(2): 81–93.

    Article  CAS  Google Scholar 

  • Sahasrabuddhe, M. (1967). J. Am. Oil Chem. Soc. 44(7): 376–8.

    Article  Google Scholar 

  • Sahasrabuddhe, M. R. and Chadha, R. K. (1969). J. Am. Oil Chem. Soc. 46(1): 8–12.

    Article  Google Scholar 

  • Santacesaria, E. et al. (1995). Role of Ethylene Oxide Solubility in the Ethoxylation Process. Catalysis in Multiphase Systems: 549th Event of the EFCHE, Lyon, FR, Catal. Today.

    Google Scholar 

  • Santacesaria, E. (1999). Mass Transfer and Kinetics in Ethoxylation Spray Tower Loop Reactors. Proceedings of the 1999 1st International Symposium on Multifunctional Reactors, Amsterdam, NLD: Chemical Engineering Science.

    Google Scholar 

  • Sax, N. I. and Lewis, R. J. (1989). Succinic Anhydride. Dangerous Properties of Industrial Materials. New York: Van Nostrand Reinhold. III: 3131–2.

    Google Scholar 

  • Schuetze, T. (1977). Nahrung 21(5): 405–15.

    Article  CAS  Google Scholar 

  • Schuyl, P. J. W. and Platerink, V. (1994). Analysis of Sucrose Polyesters with Electrospray Mass Spectrometry. 42nd A.S.M.S. Conference on Mass Spectrometry, Chicago, IL.

    Google Scholar 

  • Shmidt, A. A. et al. (1976a). Chromatographic Analysis of Succinylated and Lactylated Monoglycerides as Food Surfactants. Khimicheskava Promyshlennost 8: 598–600.

    Google Scholar 

  • Shmidt, A. A. et al. (1976b). Synthesis of Lactylated Monoglycerides. Masolzhironyaya Promyshlennost 10: 19–20.

    Google Scholar 

  • Shmidt, A. A. et al. (1979). Determination of the Tartaric Acid Content of Diacetyltartaric Acid Esters of Monoglycerides and Mono-and Diglycerides. Lebensmittelindustrie 26(4): 172–3.

    CAS  Google Scholar 

  • Sietze, F. G. (1982). Seifen Oele Fette Wachse 108(20): 637–9.

    Google Scholar 

  • Sigfried, P. and Eckhard, W. (2005). Process for the Transrsterification of Fat and/or Oil by Means of Alcoholysis. U. S 5, 933, 398 B2.

    Google Scholar 

  • Sim, J. S. (1994). New Extraction and Fractionation Method for Lecithin and Neutral Oil from Egg Yolk. Egg Use and Processing Technology, Wallingford, UK: CAB International.

    Google Scholar 

  • Stockburger, G. J. (1981). Process for Preparing Sorbitan Esters. U.S. 4, 297, 290, ICI Americas, Inc.

    Google Scholar 

  • Strong, C. H. (1976). Alkylene Glycol Alginates. German DE 2529086, Uniroyal, Ltd.

    Google Scholar 

  • Swanson, S. and Swanson, B. G. (1999). Alkyl and Acyl Sugars. In F. D. Gunstone (ed.), Lipid Synthesis and Manufacture pp. 347–70. Sheffield: Academic Press/CRC Press.

    Google Scholar 

  • Szabo, I. et al. (1977). Investigations on the New Preparation Possibilities of Span 80 and Tween 80. Conference on Applied Chemistry, Budapest, Magy. Kem. Egyesulete.

    Google Scholar 

  • Szuhaj, B. F. (2005). Lecithins. In F. Shahidi (ed.), Bailey’s Industrial Oil and Fat Products. (vol 3, pp. 361–456). New York: John Wiley and Sons.

    Google Scholar 

  • Tamura, T. and Suginuma, T. (1991). Preparation of Higher Fatty Acid Monoglycerides as Emulsifiers and Moisturizers. HCA PLUS. Japan JP 03200744 A2, Daisan Kasei Co., Ltd.

    Google Scholar 

  • Udajari, S. (1996a). Ethylene Oxide. The Merck Index. Whitehouse Station N.J.: Merck & Co., Inc. 647.

    Google Scholar 

  • Udajari, S. (1996b). “Propylene Oxide.” The Merck Index, White House Station, Merck & co., p. 1349.

    Google Scholar 

  • Van Nispen, J. G. M. and Olivier, A. P. C. (1989). Preparation of Sugars of Non-reducing Sugars and One or More Fatty Acids by Transesterification Using a High Shear Mixing Device. HCAPLUS 111:134688. Europe EP 315265 A!, Cooperative Vereninging Suiker Unie U. A.

    Google Scholar 

  • Wagner, F. W. et al. (1990). Preparation of Sugar Fatty Acid Esters Having a Degree of Polymerization up to 2. U.S. 4, 927, 920, Nebraska Dept. of Economic Development.

    Google Scholar 

  • Waldinger, C. and Schneider, M. (1996). Enzyme Esterification of Glycerol IIIL Lipase-catalyzed Synthesis of Regiomerically Pure 1, 3-sn-Diacylglycerols and 1, 3-rac-Monoacylglycerols Derivrd from Unsaturated Fatty Acids. J. Am. Oil Chem. Soc. 73(11): 1513–19.

    Article  CAS  Google Scholar 

  • Wang, X. G. et al. (1997). Synthesis of Phosphatidylglycerol from Soybean Lecithin with Immobilized Phospholipase D. J. Am. Oil Chem. Soc. 74: 87–91.

    Article  CAS  Google Scholar 

  • Wilson, D. C. (1999). Continuous Process for the Synthesis of Sucrose Fatty Acid Esters. U. S 5, 872, 245, Optima Technologies Group.

    Google Scholar 

  • Woods, G. E. (1961). U.S. 3, 012, 047.

    Google Scholar 

  • Yamane, T. et al. (1984). Continuous Synthesis of Glycerides by Lipase in a Microporous Membrane Bioreactor. Ann. N. Y. Acad. Sci. 434: 558–68.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hasenhuettl, G.L. (2008). Synthesis and Commercial Preparation of Food Emulsifiers. In: Hasenhuettl, G.L., Hartel, R.W. (eds) Food Emulsifiers and Their Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75284-6_2

Download citation

Publish with us

Policies and ethics