Skip to main content

Cholinergic Neurodegeneration in Alzheimer's Disease: Basis for Nerve Growth Factor Therapy

  • Chapter

Neurotrophins play an important role in the survival, differentiation, and maintenance of neurons selectively involved in a number of disorders of the nervous system. Nerve growth factor (NGF) plays a vital role for basal forebrain cholinergic neurons (BFCNs), including the maintenance of the cholinergic phenotype in adults. Recognition of this role has suggested the use of NGF to ameliorate the loss of these neurons in Alzheimer’s disease (AD).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albeck, D. S., Backman, C., Veng, L., Friden, P., Rose, G. M., & Granholm, A. (1999). Acute application of NGF increases the firing rate of aged rat basal forebrain neurons. The European Journal of Neuroscience, 11, 2291–2304.

    Article  CAS  PubMed  Google Scholar 

  • Alkondon, M., & Albuquerque, E. X. (2004). The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Progress in Brain Research, 145, 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Allen, S. J., Dawbarn, D., & Wilcock, G. K. (1988). Morphometric immunochemical analysis of neurons in the nucleus basalis of Meynert in Alzheimer's disease. Brain Research, 454, 275–281.

    Article  CAS  PubMed  Google Scholar 

  • Almaguer-Melian, W., Rosillo, J. C., Frey, J. U., & Bergado, J. A. (2006). Subcortical deafferentation impairs behavioral reinforcement of long-term potentiation in the dentate gyrus of freely moving rats. Neuroscience, 138, 1083–1088.

    Article  CAS  PubMed  Google Scholar 

  • Araujo, D. M., Lapchak, P. A., Collier, B., & Quirion, R. (1988). Characterization of N-[3H]methylcarbamylcholine binding sites and effect of N-methylcarbamylcholine on acetylcholine release in rat brain. Journal of Neurochemistry, 51, 292–299.

    Article  CAS  PubMed  Google Scholar 

  • Arendt, T., Bigl, V., Arendt, A., & Tennstedt, A. (1983). Loss of neurons in the nucleus basalis of Meynert in Alzheimer's disease, paralysis agitans and Korsakoff's Disease. Acta Neuropathologica, 61, 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Arendt, T., Bigl, V., & Arendt, A. (1984). Neurone loss in the nucleus basalis of Meynert in Creutzfeldt-Jakob disease. Acta Neuropathologica, 65, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Arendt, T., Bigl, V., Tennstedt, A., & Arendt, A. (1985). Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer's disease. Neuroscience, 14, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Arendt, T., Bruckner, M. K., Bigl, V., & Marcova, L. (1995). Dendritic reorganisation in the basal forebrain under degenerative conditions and its defects in Alzheimer's disease. II. Ageing, Korsakoff's disease, Parkinson's disease, and Alzheimer's disease. The Journal of Comparative Neurology, 351, 189–222.

    Article  CAS  PubMed  Google Scholar 

  • Auerbach, J. M., & Segal, M. (1994). A novel cholinergic induction of long-term potentiation in rat hippocampus. Journal of Neurophysiology, 72, 2034–2040.

    CAS  PubMed  Google Scholar 

  • Balse, E., Lazarus, C., Kelche, C., Jeltsch, H., Jackisch, R., & Cassel, J. C. (1999). Intrahippocampal grafts containing cholinergic and serotonergic fetal neurons ameliorate spatial reference but not working memory in rats with fimbria-fornix/cingular bundle lesions. Brain Research Bulletin, 49, 263–272.

    Article  CAS  PubMed  Google Scholar 

  • Bartus, R. T., Dean, R. L., Goas, J. A., & Lippa, A. S. (1980). Age-related changes in passive avoidance retention: Modulation with dietary choline. Science, 209, 301–303.

    Article  CAS  PubMed  Google Scholar 

  • Bartus, R. T., & Johnson, H. R. (1976). Short-term memory in the rhesus monkey: Disruption from the anti-cholinergic scopolamine. Pharmacology, Biochemistry, and Behavior, 5, 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Belichenko, P. V., Masliah, E., Kleschevnikov, A. M., Villar, A. J., Epstein, C. J., Salehi, A., et al. (2004). Synaptic structural abnormalities in the Ts65Dn mouse model of down syndrome. The Journal of Comparative Neurology, 480, 281–298.

    Article  PubMed  Google Scholar 

  • Belichenko, P. V., Kleschevnikov, A. M., Salehi, A., Epstein, C. J., Mobley, C. W. (2007). Synaptic and cognitive abnormalities in mouse models of Down syndrome: Exploring genotype-phenotype relationship. Journal of Comparative Neurology, in press.

    Google Scholar 

  • Berger-Sweeney, J., Stearns, N. A., Murg, S. L., Floerke-Nashner, L. R., Lappi, D. A., & Baxter, M. G. (2001). Selective immunolesions of cholinergic neurons in mice: Effects on neuroanatomy, neurochemistry, and behavior. The Journal of Neuroscience, 21, 8164–8173.

    CAS  PubMed  Google Scholar 

  • Bjorklund, A., Nilsson, O. G., & Kalen, P. (1990). Reafferentation of the subcortically denervated hippocampus as a model for transplant-induced functional recovery in the CNS. Progress in Brain Research, 83, 411–426.

    Article  CAS  PubMed  Google Scholar 

  • Bland, B. H. (1986). The physiology and pharmacology of hippocampal formation theta rhythms. Progress in Neurobiology, 26, 1–54.

    Article  CAS  PubMed  Google Scholar 

  • Bland, B. H. (2004). The power of theta: Providing insights into the role of the hippocampal formation in sensorimotor integration. Hippocampus, 14, 537–538.

    Article  PubMed  Google Scholar 

  • Bland, B. H., & Colom, L. V. (1993). Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Progress in Neurobiology, 41, 157–208.

    Article  CAS  PubMed  Google Scholar 

  • Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Boissiere, F., Faucheux, B., Ruberg, M., Agid, Y., & Hirsch, E. C. (1997). Decreased TrkA gene expression in cholinergic neurons of the striatum and basal forebrain of patients with Alzheimer's disease. Experimental Neurology, 145, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Boncristiano, S., Calhoun, M. E., Kelly, P. H., Pfeifer, M., Bondolfi, L., Stalder, M., et al. (2002). Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis. The Journal of Neuroscience, 22, 3234–3243.

    CAS  PubMed  Google Scholar 

  • Borchelt, D. R., Ratovitski, T., van Lare, J., Lee, M. K., Gonzales, V., Jenkins, N. A., et al. (1997). Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron, 19, 939–945.

    Article  CAS  PubMed  Google Scholar 

  • Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., et al. (1996). Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1–42/1–40 ratio in vitro and in vivo. Neuron, 17, 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  • Bowen, D. M., Smith, C. B., White, P., & Davison, A. N. (1976). Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 99, 459–496.

    Article  CAS  PubMed  Google Scholar 

  • Bronfman, F. C., Moechars, D., & Van Leuven, F. (2000). Acetylcholinesterase-positive fiber deafferentation and cell shrinkage in the septohippocampal pathway of aged amyloid precursor protein london mutant transgenic mice. Neurobiology of Disease, 7, 152–168.

    Article  CAS  PubMed  Google Scholar 

  • Brookmeyer, R., Gray, S., & Kawas, C. (1998). Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. American Journal of Public Health, 88, 1337–1342.

    Article  CAS  PubMed  Google Scholar 

  • Brown, D. A., Abogadie, F. C., Allen, T. G., Buckley, N. J., Caulfield, M. P., Delmas, P., et al. (1997). Muscarinic mechanisms in nerve cells. Life Sciences, 60, 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  • Bruno, M. A., Clarke, P. B., Seltzer, A., Quirion, R., Burgess, K., Cuello, A. C., et al. (2004). Long-lasting rescue of age-associated deficits in cognition and the CNS cholinergic phenotype by a partial agonist peptidomimetic ligand of TrkA. The Journal of Neuroscience, 24, 8009–8018.

    Article  CAS  PubMed  Google Scholar 

  • Burgard, E. C., & Sarvey, J. M. (1990). Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neuroscience Letters, 116, 34–39.

    Article  CAS  PubMed  Google Scholar 

  • Cabin, D. E., McKee-Johnson, J. W., Matesic, L. E., Wiltshire, T., Rue, E. E., Mjaatvedt, A. E., et al. (1998). Physical and comparative mapping of distal mouse chromosome 16. 5 p5. Genome Research, 8, 940–950.

    CAS  PubMed  Google Scholar 

  • Caccamo, A., Oddo, S., Billings, L. M., Green, K. N., Martinez-Coria, H., Fisher, A., et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron, 49, 671–682.

    Google Scholar 

  • Cao, X., & Sudhof, T. C. (2001). A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science, 293, 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Casaccia-Bonnefil, P., Carter, B. D., Dobrowsky, R. T., & Chao, M. V. (1996). Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature, 383, 716–719.

    Article  CAS  PubMed  Google Scholar 

  • Cataldo, A. M., Petanceska, S., Peterhoff, C. M., Terio, N. B., Epstein, C. J., Villar, A., et al. App gene dosage modulates endosomal abnormalities of Alzheimer's disease in a segmental trisomy 16 mouse model of down syndrome. The Journal of Neuroscience, 23, 6788–6792.

    Google Scholar 

  • Cataldo, A. M., Petanceska, S., Terio, N. B., Peterhoff, C. M., Durham, R., Mercken, M., et al. (2004). Abeta localization in abnormal endosomes: Association with earliest Abeta elevations in AD and Down syndrome. Neurobiology of Aging, 25, 1263–1272.

    Article  CAS  PubMed  Google Scholar 

  • Caulfield, M. P. (1993). Muscarinic receptors-Characterization, coupling and function. Pharmacology and Therapeutics, 58, 319–379.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. P., Eastwood, S. L., Hope, T., McDonald, B., Francis, P. T., & Esiri, M. M. (2000). Immunocytochemical study of the dorsal and median raphe nuclei in patients with Alzheimer's disease prospectively assessed for behavioural changes. Neuropathology and Applied Neurobiology, 26, 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K. S., & Gage, F. H. (1995). Somatic gene transfer of NGF to the aged brain: Behavioral and morphological amelioration. The Journal of Neuroscience, 15, 2819–2825.

    CAS  PubMed  Google Scholar 

  • Chen, K. S., Nishimura, M. C., Armanini, M. P., Crowley, C., Spencer, S. D., & Phillips, H. S. (1997). Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. The Journal of Neuroscience, 17, 7288–7296.

    CAS  PubMed  Google Scholar 

  • Chesselet, M. F. (1984). Presynaptic regulation of neurotransmitter release in the brain: Facts and hypothesis. Neuroscience, 12, 347–375.

    Article  CAS  PubMed  Google Scholar 

  • Cobb, S. R., & Davies, C. H. (2005). Cholinergic modulation of hippocampal cells and circuits. The Journal of Physiology, 562, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, J. D., Salehi, A., Delcroix, J. D., Howe, C. L., Belichenko, P. V., Chua-Couzens, J., et al. (2001). Failed retrograde transport of NGF in a mouse model of Down's syndrome: Reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proceedings of the National Academy of Sciences of the United States of America, 98, 10439–10444.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, J. D., Skepper, J. N., Berzaghi, M. D., Lindholm, D., & Sofroniew, M. V. (1996). Delayed death of septal cholinergic neurons after excitotoxic ablation of hippocampal neurons during early postnatal development in the rat. Experimental Neurology, 139, 143–155.

    Article  CAS  PubMed  Google Scholar 

  • da Cruz, M. T., Cardoso, A. L., de Almeida, L. P., Simoes, S., & de Lima, M. C. (2005). Tf-lipoplex-mediated NGF gene transfer to the CNS: Neuronal protection and recovery in an excitotoxic model of brain injury. Gene Therapy, 12, 1242–1252.

    Article  CAS  PubMed  Google Scholar 

  • Davis, K. L., Mohs, R. C., Marin, D., Purohit, D. P., Perl, D. P., Lantz, M., et al. (1999). Cholinergic markers in elderly patients with early signs of Alzheimer disease. The Journal of the American Medical Association, 281, 1401–1406.

    Article  CAS  Google Scholar 

  • De Rosa, R., Garcia, A. A., Braschi, C., Capsoni, S., Maffei, L., Berardi, N., et al. (2005). Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 3811–3816.

    Article  CAS  PubMed  Google Scholar 

  • de Sevilla, D. F., Cabezas, C., de Prada, A. N., Sanchez-Jimenez, A., & Buno, W. (2002). Selective muscarinic regulation of functional glutamatergic Schaffer collateral synapses in rat CA1 pyramidal neurons. The Journal of Physiology, 545, 51–63.

    Article  CAS  Google Scholar 

  • DeFreitas, M. F., McQuillen, P. S., & Shatz, C. J. (2001). A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. The Journal of Neuroscience, 21, 5121–5129.

    CAS  PubMed  Google Scholar 

  • Delcroix, J. D., Valletta, J. S., Wu, C., Hunt, S. J., Kowal, A. S., & Mobley, W. C. (2003). NGF signaling in sensory neurons: Evidence that early endosomes carry NGF retrograde signals. Neuron, 39, 69–84.

    Article  CAS  PubMed  Google Scholar 

  • Denham, M. J., & Borisyuk, R. M. (2000). A model of theta rhythm production in the septal-hippocampal system and its modulation by ascending brain stem pathways. Hippocampus, 10, 698–716.

    Article  CAS  PubMed  Google Scholar 

  • Diez, M., Danner, S., Frey, P., Sommer, B., Staufenbiel, M., Wiederhold, K. H., & Hokfelt, T. (2003). Neuropeptide alterations in the hippocampal formation and cortex of transgenic mice overexpressing beta-amyloid precursor protein (APP) with the Swedish double mutation (APP23). Neurobiology of Disease, 14, 579–594.

    Article  CAS  PubMed  Google Scholar 

  • Divac, I. (1975). Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb. Review of some functional correlates. Brain Research, 93, 385–398.

    CAS  Google Scholar 

  • Dobransky, T., & Rylett, R. J. (2005). A model for dynamic regulation of choline acetyltransferase by phosphorylation. Journal of Neurochemistry, 95, 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Douglas, C. L., Baghdoyan, H. A., & Lydic, R. (2001). M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse. The Journal of Pharmacology and Experimental Therapeutics, 299, 960–966.

    CAS  PubMed  Google Scholar 

  • Drachman, D. A., & Leavitt, J. (1974). Human memory and the cholinergic system. A relationship to aging? Archives of Neurology, 30, 113–121.

    CAS  PubMed  Google Scholar 

  • Drachman, D. A., & Sahakian, B. J. (1980). Memory and cognitive function in the elderly. A preliminary trial of physostigmine. Archives of Neurology, 37, 674–675.

    CAS  Google Scholar 

  • Dyrks, T., Monning, U., Beyreuther, K., & Turner, J. (1994). Amyloid precursor protein secretion and beta A4 amyloid generation are not mutually exclusive. FEBS Letters, 349, 210–214.

    Article  CAS  PubMed  Google Scholar 

  • Edeline, J. M., Hars, B., Maho, C., & Hennevin, E. (1994). Transient and prolonged facilitation of tone-evoked responses induced by basal forebrain stimulations in the rat auditory cortex. Experimental Brain Research, 97, 373–386.

    Article  CAS  Google Scholar 

  • Epstein, C. J. (2002). 2001 William Allan Award Address. From Down syndrome to the “human” in “human genetics”. American Journal of Human Genetics, 70, 300–313.

    Article  PubMed  Google Scholar 

  • Escorihuela, R. M., Fernandez-Teruel, A., Vallina, I. F., Baamonde, C., Lumbreras, M. A., Dierssen, M., et al. (1995). A behavioral assessment of Ts65Dn mice: A putative Down syndrome model. Neuroscience Letters, 199, 143–146.

    Article  CAS  PubMed  Google Scholar 

  • Escorihuela, R. M., Vallina, I. F., Martinez-Cue, C., Baamonde, C., Dierssen, M., Tobena, A., et al. (1998). Impaired short- and long-term memory in Ts65Dn mice, a model for Down syndrome. Neuroscience Letters, 247, 171–174.

    Article  CAS  PubMed  Google Scholar 

  • Etienne, P., Robitaille, Y., Gauthier, S., & Nair, N. P. (1986). Nucleus basalis neuronal loss and neuritic plaques in advanced Alzheimer's disease. Canadian Journal of Physiology and Pharmacology, 64, 318–324.

    CAS  PubMed  Google Scholar 

  • Fahnestock, M., Scott, S. A., Jette, N., Weingartner, J. A., & Crutcher, K. A. (1996). Nerve growth factor mRNA and protein levels measured in the same tissue from normal and Alzheimer's disease parietal cortex. Brain Research, Molecular Brain Research, 42, 175–178.

    Article  CAS  Google Scholar 

  • Fantie, B. D., & Goddard, G. V. (1982). Septal modulation of the population spike in the fascia dentata produced by perforant path stimulation in the rat. Brain Research, 252, 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Finger, S. (1994). Origins of Neuroscience, New York: Oxford University Press.

    Google Scholar 

  • Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, S., & Sumikawa, K. (2001). Nicotine accelerates reversal of long-term potentiation and enhances long-term depression in the rat hippocampal CA1 region. Brain Research, 894, 340–346.

    Article  CAS  PubMed  Google Scholar 

  • Gabuzda, D., Busciglio, J., & Yankner, B. A. (1993). Inhibition of beta-amyloid production by activation of protein kinase C. Journal of Neurochemistry, 61, 2326–2329.

    Article  CAS  PubMed  Google Scholar 

  • Gardiner, K., Fortna, A., Bechtel, L., & Davisson, M. T. (2003). Mouse models of Down syndrome: How useful can they be? Comparison of the gene content of human chromosome 21 with orthologous mouse genomic regions. Gene, 318, 137–147.

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg, S. D., Che, S., Counts, S. E., & Mufson, E. J. (2006). Single cell gene expression profiling in Alzheimer's disease. The Journal of the American Society for Experimental NeuroTherapeutics, 3, 302–318.

    CAS  Google Scholar 

  • Goedert, M., Fine, A., Dawbarn, D., Wilcock, G. K., & Chao, M. V. (1989). Nerve growth factor receptor mRNA distribution in human brain: Normal levels in basal forebrain in Alzheimer's disease. Brain Research Mol ecularBrain Research, 5, 1–7.

    Article  CAS  Google Scholar 

  • Gotti, C., Zoli, M., & Clementi, F. (2006). Brain nicotinic acetylcholine receptors: Native subtypes and their relevance. Trends in Pharmacological Sciences, 27, 482–491.

    Article  CAS  PubMed  Google Scholar 

  • Granholm, A. C., Albeck, D., Backman, C., Curtis, M., Ebendal, T., Friden, P., et al. (1998). A non-invasive system for delivering neural growth factors across the blood-brain barrier: A review. Reviews in the Neurosciences, 9, 31–55.

    CAS  PubMed  Google Scholar 

  • Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., & Dani, J. A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 383, 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Greig, N. H., Sambamurti, K., Yu, Q. S., Brossi, A., Bruinsma, G. B., & Lahiri, D. K. (2005). An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Current Alzheimer Research, 2, 281–290.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, S. E., & Nathanson, N. M. (2001). The M1 receptor is required for muscarinic activation of mitogen-activated protein (MAP) kinase in murine cerebral cortical neurons. The Journal of Biological Chemistry, 276, 15850–15853.

    Article  CAS  PubMed  Google Scholar 

  • Hattori, M., Fujiyama, A., Taylor, T. D., Watanabe, H., Yada, T., Park, H. S., et al. (2000). The DNA sequence of human chromosome 21. Nature, 405, 311–319.

    Article  CAS  PubMed  Google Scholar 

  • He, X. L., & Garcia, K. C. (2004). Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science, 304, 870–875.

    Article  CAS  PubMed  Google Scholar 

  • Heimer, L., & Van Hoesen, G. W. (2006). The limbic lobe and its output channels: Implications for emotional functions and adaptive behavior. Neuroscience and Biobehavioral Reviews, 30, 126–147.

    Article  PubMed  Google Scholar 

  • Higgins, G. A., Koh, S., Chen, K. S., & Gage, F. H. (1989). NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron, 3, 247–256.

    Article  CAS  PubMed  Google Scholar 

  • Hodges, H., Allen, Y., Sinden, J., Lantos, P. L., & Gray, J. A. (1990). Cholinergic-rich transplants alleviate cognitive deficits in lesioned rats, but exacerbate response to cholinergic drugs. Progress in Brain Research, 82, 347–358.

    Article  CAS  PubMed  Google Scholar 

  • Holtzman, D. M., Santucci, D., Kilbridge, J., Chua-Couzens, J., Fontana, D. J., Daniels, S. E., et al. (1996). Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 93, 13333–13338.

    Article  CAS  PubMed  Google Scholar 

  • Hoogendijk, W. J., Pool, C. W., Troost, D., van Zwieten, E., & Swaab, D. F. (1995). Image analyser-assisted morphometry of the locus coeruleus in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Brain, 118(Pt. 1), 131–143.

    Article  PubMed  Google Scholar 

  • Howe, C. L., & Mobley, W. C. (2005). Long-distance retrograde neurotrophic signaling. Current Opinion in Neurobiology, 15, 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Hu, L., Wong, T. P., Cote, S. L., Bell, K. F., and Cuello, A. C. (2003). The impact of Abeta-plaques on cortical cholinergic and non-cholinergic presynaptic boutons in alzheimer's disease-like transgenic mice. Neuroscience, 121, 421–432.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L. F., Cartwright, W. S., & Hu, T. W. (1988). The economic cost of senile dementia in the United States, 1985. Public Health Reports, 103, 3–7.

    CAS  PubMed  Google Scholar 

  • Hudon, C., Dore, F. Y., & Goulet, S. (2002). Spatial memory and choice behavior in the radial arm maze after fornix transection. Progress in Neuro-psychopharmacology and Biological Psychiatry, 26, 1113–1123.

    Article  PubMed  Google Scholar 

  • Huerta, P. T., & Lisman, J. E. (1993). Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature, 364, 723–725.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, B. E., de Fiebre, C. M., Papke, R. L., Kem, W. R., & Meyer, E. M. (1994). A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neuroscience Letters, 168, 130–134.

    Article  CAS  PubMed  Google Scholar 

  • Jaffar, S., Counts, S. E., Ma, S. Y., Dadko, E., Gordon, M. N., Morgan, D., et al. (2001). Neuropathology of mice carrying mutant APP(swe) and/or PS1(M146L) transgenes: Alterations in the p75(NTR) cholinergic basal forebrain septohippocampal pathway. Experimental Neurology, 170, 227–243.

    Article  CAS  PubMed  Google Scholar 

  • Jakab, R. L., & Leranth, C. (1995). Septum. In G. Paxinos (Ed.), The rat nervous system (pp. 405–442). San Diego: Academic Press.

    Google Scholar 

  • Jankowsky, J. L., Slunt, H. H., Gonzales, V., Jenkins, N. A., Copeland, N. G., & Borchelt, D. R. (2004). APP processing and amyloid deposition in mice haplo-insufficient for presenilin 1. Neurobiology of Aging, 25, 885–892.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, A. A., Frolund, B., Liljefors, T., & Krogsgaard-Larsen, P. (2005). Neuronal nicotinic acetylcholine receptors: Structural revelations, target identifications, and therapeutic inspirations. Journal of Medicinal Chemistry, 48, 4705–4745.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, M. V., McKinney, M., & Coyle, J. T. (1979). Evidence for a cholinergic projection to neocortex from neurons in basal forebrain. Proceedings of the National Academy of Sciences of the United States of America, 76, 5392–5396.

    Article  CAS  PubMed  Google Scholar 

  • Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., et al. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325, 733–736.

    Article  CAS  PubMed  Google Scholar 

  • Kar, S., Issa, A. M., Seto, D., Auld, D. S., Collier, B., & Quirion, R. (1998). Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. Journal of Neurochemistry, 70, 2179–2187.

    CAS  PubMed  Google Scholar 

  • Kar, S., Seto, D., Gaudreau, P., & Quirion, R. (1996). Beta-amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices. The Journal of Neuroscience, 16, 1034–1040.

    CAS  PubMed  Google Scholar 

  • Kar, S., Slowikowski, S. P., Westaway, D., & Mount, H. T. (2004). Interactions between beta-amyloid and central cholinergic neurons: Implications for Alzheimer's disease. Journal of Psychiatry and Neuroscience, 29, 427–441.

    PubMed  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279, 1714–1718.

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood, A., Rozas, C., Kirkwood, J., Perez, F., & Bear, M. F. (1999). Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. The Journal of Neuroscience, 19, 1599–1609.

    CAS  PubMed  Google Scholar 

  • Kleschevnikov, A. M., Belichenko, P. V., Villar, A. J., Epstein, C. J., Malenka, R. C., & Mobley, W. C. (2004). Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. The Journal of Neuroscience, 24, 8153–8160.

    Article  CAS  PubMed  Google Scholar 

  • Korsching, S., Auburger, G., Heumann, R., Scott, J., & Thoenen, H. (1985). Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. The EMBO Journal, 4, 1389–1393.

    CAS  PubMed  Google Scholar 

  • Lamb, B. T., Sisodia, S. S., Lawler, A. M., Slunt, H. H., Kitt, C. A., Kearns, W. G., et al. (1993). Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nature Genetics, 5, 22–30.

    Article  CAS  PubMed  Google Scholar 

  • Lamprea, M. R., Cardenas, F. P., Silveira, R., Morato, S., & Walsh, T. J. (2000). Dissociation of memory and anxiety in a repeated elevated plus maze paradigm: Forebrain cholinergic mechanisms. Behavioural Brain Research, 117, 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Lanzafame, A. A., Christopoulos, A., & Mitchelson, F. (2003). Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors Channels, 9, 241–260.

    Article  CAS  PubMed  Google Scholar 

  • Larson, J., Wong, D., & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368, 347–350.

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc, A. C., Koutroumanis, M., & Goodyer, C. G. (1998). Protein kinase C activation increases release of secreted amyloid precursor protein without decreasing Abeta production in human primary neuron cultures. The Journal of Neuroscience, 18, 2907–2913.

    CAS  PubMed  Google Scholar 

  • Lee, F. S., Rajagopal, R., Kim, A. H., Chang, P. C., & Chao, M. V. (2002). Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase-activating polypeptides. The Journal of Biological Chemistry, 277, 9096–9102.

    Article  CAS  PubMed  Google Scholar 

  • Leranth, C., & Frotscher, M. (1987). Cholinergic innervation of hippocampal GAD- and somatostatin-immunoreactive commissural neurons. The Journal of Comparative Neurology, 261, 33–47.

    Article  CAS  PubMed  Google Scholar 

  • Levey, A. I., Kitt, C. A., Simonds, W. F., Price, D. L., & Brann, M. R. (1991). Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. The Journal of Neuroscience, 11, 3218–3226.

    CAS  PubMed  Google Scholar 

  • Levy, E., Carman, M. D., Fernandez-Madrid, I. J., Power, M. D., Lieberburg, I., van Duinen, S. G., et al. (1990). Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science, 248, 1124–1126.

    Article  CAS  PubMed  Google Scholar 

  • Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science, 269, 973–977.

    Article  CAS  PubMed  Google Scholar 

  • Lewin, G. R., Rueff, A., & Mendell, L. M. (1994). Peripheral and central mechanisms of NGF-induced hyperalgesia. The European Journal of Neuroscience, 6, 1903–1912.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Holtzman, D. M., Kromer, L. F., Kaplan, D. R., Chua-Couzens, J., Clary, D. O., et al. (1995). Regulation of TrkA and ChAT expression in developing rat basal forebrain: Evidence that both exogenous and endogenous NGF regulate differentiation of cholinergic neurons. The Journal of Neuroscience, 15, 2888–2905.

    CAS  PubMed  Google Scholar 

  • Loeb, D. M., Maragos, J., Martin-Zanca, D., Chao, M. V., Parada, L. F., & Greene, L. A. (1991). The trk proto-oncogene rescues NGF responsiveness in mutant NGF-nonresponsive PC12 cell lines. Cell, 66, 961–966.

    Article  CAS  PubMed  Google Scholar 

  • Loffelholz, K. (1996). Muscarinic receptors and cell signalling. Progress in Brain Research, 109, 191–194.

    Article  CAS  PubMed  Google Scholar 

  • Longo, F. M., & Massa, S. M. (2005). Neurotrophin receptor-based strategies for Alzheimer's disease. Current Alzheimer Research, 2, 167–169.

    Article  CAS  PubMed  Google Scholar 

  • Loy, R., Taglialatela, G., Angelucci, L., Heyer, D., & Perez-Polo, R. (1994). Regional CNS uptake of blood-borne nerve growth factor. Journal of Neuroscience Research, 39, 339–346.

    Article  CAS  PubMed  Google Scholar 

  • Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21.

    Article  CAS  PubMed  Google Scholar 

  • Maliartchouk, S., Feng, Y., Ivanisevic, L., Debeir, T., Cuello, A. C., Burgess, K., et al. (2000). A designed peptidomimetic agonistic ligand of TrkA nerve growth factor receptors. Molecular Pharmacology, 57, 385–391.

    CAS  PubMed  Google Scholar 

  • Mann, D. M., Yates, P. O., Marcyniuk, B., & Ravindra, C. R. (1985). Pathological evidence for neurotransmitter deficits in Down's syndrome of middle age. Journal of Mental Deficiency Research, 29(Pt. 2), 125–135.

    PubMed  Google Scholar 

  • Marrosu, F., Portas, C., Mascia, M. S., Casu, M. A., Fa, M., Giagheddu, M., et al. (1995). Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Research, 671, 329–332.

    Article  CAS  PubMed  Google Scholar 

  • Massa, S. M., Xie, Y., Yang, T., Harrington, A. W., Kim, M. L., Yoon, S. O., et al. (2006). Small, nonpeptide p75NTR ligands induce survival signaling and inhibit proNGF-induced death. The Journal of Neuroscience, 26, 5288–5300.

    Article  CAS  PubMed  Google Scholar 

  • Massey, P. V., Bhabra, G., Cho, K., Brown, M. W., & Bashir, Z. I. (2001). Activation of muscarinic receptors induces protein synthesis-dependent long-lasting depression in the perirhinal cortex. The European Journal of Neuroscience, 14, 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama, S., Matsumoto, A., Enomoto, T., & Nishizaki, T. (2000). Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. The European Journal of Neuroscience, 12, 3741–3747.

    Article  CAS  PubMed  Google Scholar 

  • Maurer, K., Volk, S., & Gerbaldo, H. (1997). Auguste D and Alzheimer's disease. Lancet, 349, 1546–1549.

    Article  CAS  PubMed  Google Scholar 

  • McCartney, H., Johnson, A. D., Weil, Z. M., & Givens, B. (2004). Theta reset produces optimal conditions for long-term potentiation. Hippocampus, 14, 684–687.

    Article  PubMed  Google Scholar 

  • McCormick, D. A. (1989). Cholinergic and noradrenergic modulation of thalamocortical processing. Trends in Neurosciences, 12, 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M. (1990). Human brain cholinergic pathways. Progress in Brain Research, 84, 231–241.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M. (1995). Cholinergic pathways and the ascending reticular activating system of the human brain. Annals of the New York Academy of Sciences, 757, 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M. (1996). The systems-level organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer's disease. Progress in Brain Research, 109, 285–297.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M., Mufson, E. J., Levey, A. I., & Wainer, B. H. (1983). Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. The Journal of Comparative Neurology, 214, 170–197.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M., Mufson, E. J., Levey, A. I., & Wainer, B. H. (1984). Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience, 12, 669–686.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M., Mufson, E. J., Wainer, B. H., & Levey, A. I. (1983). Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience, 10, 1185–1201.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M., Rosen, A. D., & Mufson, E. J. (1984). Regional variations in cortical cholinergic innervation: Chemoarchitectonics of acetylcholinesterase-containing fibers in the macaque brain. Brain Research, 311, 245–258.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M., Shaw, P., Mash, D., & Weintraub, S. (2004). Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Annals of Neurology, 55, 815–828.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M., & Van Hoesen, G. W. (1976). Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex. Brain Research, 109, 152–157.

    Article  CAS  PubMed  Google Scholar 

  • Mobley, W. C., Rutkowski, J. L., Tennekoon, G. I., Buchanan, K., & Johnston, M. V. (1985). Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor. Science, 229, 284–287.

    Article  CAS  PubMed  Google Scholar 

  • Mufson, E. J., Conner, J. M., & Kordower, J. H. (1995). Nerve growth factor in Alzheimer's disease: Defective retrograde transport to nucleus basalis. Neuroreport, 6, 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  • Mufson, E. J., Kroin, J. S., Sendera, T. J., & Sobreviela, T. (1999). Distribution and retrograde transport of trophic factors in the central nervous system: Functional implications for the treatment of neurodegenerative diseases. Progress in Neurobiology, 57, 451–484.

    Article  CAS  PubMed  Google Scholar 

  • Mufson, E. J., Lavine, N., Jaffar, S., Kordower, J. H., Quirion, R., & Saragovi, H. U. (1997). Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer's disease. Experimental Neurology, 146, 91–103.

    Article  CAS  PubMed  Google Scholar 

  • Mufson, E. J., Ma, S. Y., Dills, J., Cochran, E. J., Leurgans, S., Wuu, J., et al. (2002). Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease. The Journal of Comparative Neurology, 443, 136–153.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, L., Nordberg, A., Hardy, J., Wester, P., & Winblad, B. (1986). Physostigmine restores 3H-acetylcholine efflux from Alzheimer brain slices to normal level. Journal of Neural Transmission, 67, 275–285.

    Article  CAS  PubMed  Google Scholar 

  • Nitsch, R. M., Slack, B. E., Wurtman, R. J., & Growdon, J. H. (1992). Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science, 258, 304–307.

    Article  CAS  PubMed  Google Scholar 

  • Nonomura, T., Nishio, C., Lindsay, R. M., & Hatanaka, H. (1995). Cultured basal forebrain cholinergic neurons from postnatal rats show both overlapping and non-overlapping responses to the neurotrophins. Brain Research, 683, 129–139.

    Article  CAS  PubMed  Google Scholar 

  • Olton, D. S. (1977). The function of septo-hippocampal connections in spatially organized behaviour. Ciba Foundation Symposium, 327–349.

    Google Scholar 

  • Orr, G., Rao, G., Houston, F. P., McNaughton, B. L., & Barnes, C. A. (2001). Hippocampal synaptic plasticity is modulated by theta rhythm in the fascia dentata of adult and aged freely behaving rats. Hippocampus, 11, 647–654.

    Article  CAS  PubMed  Google Scholar 

  • Ovsepian, S. V. (2006). Enhancement of the synchronized firing of CA1 pyramidal cells by medial septum preconditioning: Time-dependent involvement of muscarinic cholinoceptors and GABAB receptors. Neuroscience Letters, 393, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Ovsepian, S. V., Anwyl, R., & Rowan, M. J. (2004). Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: In vivo study. The European Journal of Neuroscience, 20, 1267–1275.

    Article  PubMed  Google Scholar 

  • Paterson, D., & Nordberg, A. (2000). Neuronal nicotinic receptors in the human brain. Progress in Neurobiology, 61, 75–111.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, R. C., Sofroniew, M. V., Cuello, A. C., Powell, T. P., Eckenstein, F., Esiri, M. M., et al. (1983). Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer's type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Research, 289, 375–379.

    Article  CAS  PubMed  Google Scholar 

  • Pehar, M., Cassina, P, M., V., Xie, Y., Beckman, J. S., Massa, S. M., Longo, F. M., et al. (2006). Modulation of p75NTR-dependent motor neuron death by a small non-peptidyl mimetic of the neurotrophin loop 1 domain. The European Journal of Neuroscience, In press.

    Google Scholar 

  • Perry, E. K., Morris, C. M., Court, J. A., Cheng, A., Fairbairn, A. F., McKeith, I. G., et al. (1995). Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: Possible index of early neuropathology. Neuroscience, 64, 385–395.

    Article  CAS  PubMed  Google Scholar 

  • Perry, T., Hodges, H., & Gray, J. A. (2001). Behavioural, histological and immunocytochemical consequences following 192 IgG-saporin immunolesions of the basal forebrain cholinergic system. Brain Research Bulletin, 54, 29–48.

    Article  CAS  PubMed  Google Scholar 

  • Pitler, T. A., & Alger, B. E. (1992). Cholinergic excitation of GABAergic interneurons in the rat hippocampal slice. The Journal of Physiology, 450, 127–142.

    CAS  PubMed  Google Scholar 

  • Pittel, Z., Heldman, E., Rubinstein, R., & Cohen, S. (1990). Distinct muscarinic receptor subtypes differentially modulate acetylcholine release from corticocerebral synaptosomes. Journal of Neurochemistry, 55, 665–672.

    Article  CAS  PubMed  Google Scholar 

  • Prado, M. A., Reis, R. A., Prado, V. F., de Mello, M. C., Gomez, M. V., & de Mello, F. G. (2002). Regulation of acetylcholine synthesis and storage. Neurochemistry International, 41, 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Procter, A. W., Lowe, S. L., Palmer, A. M., Francis, P. T., Esiri, M. M., Stratmann, G. C., et al. Topographical distribution of neurochemical changes in Alzheimer's disease. Journal of the Neurological Sciences, 84, 125–140.

    Google Scholar 

  • Radcliffe, K. A., Fisher, J. L., Gray, R., & Dani, J. A. (1999). Nicotinic modulation of glutamate and GABA synaptic transmission of hippocampal neurons. Annals of the New York Academy of Sciences, 868, 591–610.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal, R., & Chao, M. V. (2006). A role for Fyn in Trk receptor transactivation by G-protein-coupled receptor signaling. Molecular and Cellular Neurosciences, 33, 34–46.

    Google Scholar 

  • Rinne, J. O., Paljarvi, L., & Rinne, U. K. (1987). Neuronal size and density in the nucleus basalis of Meynert in Alzheimer's disease. Journal of the Neurological Sciences, 79, 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Roberson, M. R., & Harrell, L. E. (1997). Cholinergic activity and amyloid precursor protein metabolism. Brain Research Reviews, 25, 50–69.

    Article  CAS  PubMed  Google Scholar 

  • Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., et al. (1995). Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature, 376, 775–778.

    Article  CAS  PubMed  Google Scholar 

  • Roux, P. P., & Barker, P. A. (2002). Neurotrophin signaling through the p75 neurotrophin receptor. Progress in Neurobiology, 67, 203–233.

    Article  CAS  PubMed  Google Scholar 

  • Ruberg, M., Mayo, W., Brice, A., Duyckaerts, C., Hauw, J. J., Simon, H., et al. (1990). Choline acetyltransferase activity and [3H]vesamicol binding in the temporal cortex of patients with Alzheimer's disease, Parkinson's disease, and rats with basal forebrain lesions. Neuroscience, 35, 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Ruberti, F., Capsoni, S., Comparini, A., Di Daniel, E., Franzot, J., Gonfloni, S., et al. (2000). Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. The Journal of Neuroscience, 20, 2589–2601.

    CAS  PubMed  Google Scholar 

  • Rylett, R. J., Ball, M. J., & Colhoun, E. H. (1983). Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer's disease. Brain Research, 289, 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Sago, H., Carlson, E. J., Smith, D. J., Kilbridge, J., Rubin, E. M., Mobley, W. C., et al. (1998). Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 95, 6256–6261.

    Article  CAS  PubMed  Google Scholar 

  • Salehi, A., Delcroix, J. D., & Mobley, W. C. (2003). Traffic at the intersection of neurotrophic factor signaling and neurodegeneration. Trends in Neurosciences, 26, 73–80.

    Article  CAS  PubMed  Google Scholar 

  • Salehi, A., Delcroix, J. D., & Swaab, D. F. (2004). Alzheimer's disease and NGF signaling. Journal of Neural Transmission, 111, 323–345.

    Article  CAS  PubMed  Google Scholar 

  • Salehi, A., Delcroix, J. D., Belichenko, P. V., Zhan, K., Wu, C., Valletta, J. S., et al. (2006). Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron, 51, 29–42.

    Article  CAS  PubMed  Google Scholar 

  • Salehi, A., Lucassen, P. J., Pool, C. W., Gonatas, N. K., Ravid, R., & Swaab, D. F. (1994). Decreased neuronal activity in the nucleus basalis of Meynert in Alzheimer's disease as suggested by the size of the Golgi apparatus. Neuroscience, 59, 871–880.

    Article  CAS  PubMed  Google Scholar 

  • Salehi, A., Ocampo, M., Verhaagen, J., & Swaab, D. F. (2000). P75 neurotrophin receptor in the nucleus basalis of Meynert in relation to age, sex, and Alzheimer's disease. Experimental Neurology, 161, 245–258.

    Article  CAS  PubMed  Google Scholar 

  • Salehi, A., Verhaagen, J., Dijkhuizen, P. A., & Swaab, D. F. (1996). Co-localization of high-affinity neurotrophin receptors in nucleus basalis of Meynert neurons and their differential reduction in Alzheimer's disease. Neuroscience, 75, 373–387.

    Article  CAS  PubMed  Google Scholar 

  • Samuel, W., Terry, R. D., DeTeresa, R., Butters, N., & Masliah, E. (1994). Clinical correlates of cortical and nucleus basalis pathology in Alzheimer dementia. Archives of Neurology, 51, 772–778.

    CAS  PubMed  Google Scholar 

  • Sankaranarayanan, S. (2006). Genetically modified mice models for Alzheimer's disease. Current Topics in Medicinal Chemistry, 6, 609–627.

    Article  CAS  PubMed  Google Scholar 

  • Sarter, M., & Bruno, J. P. (1997). Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Research Reviews, 23, 28–46.

    Article  CAS  PubMed  Google Scholar 

  • Sassin, I., Schultz, C., Thal, D. R., Rub, U., Arai, K., Braak, E., et al. (2000). Evolution of Alzheimer's disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathologica, 100, 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Scott, S. A., Mufson, E. J., Weingartner, J. A., Skau, K. A., & Crutcher, K. A. (1995). Nerve growth factor in Alzheimer's disease: Increased levels throughout the brain coupled with declines in nucleus basalis. The Journal of Neuroscience, 15, 6213–6221.

    CAS  PubMed  Google Scholar 

  • Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 375, 754–760.

    Article  CAS  PubMed  Google Scholar 

  • Shinoe, T., Matsui, M., Taketo, M. M., & Manabe, T. (2005). Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. The Journal of Neuroscience, 25, 11194–11200.

    Article  CAS  PubMed  Google Scholar 

  • Shivers, B. D., Hilbich, C., Multhaup, G., Salbaum, M., Beyreuther, K., & Seeburg, P. H. (1988). Alzheimer's disease amyloidogenic glycoprotein: Expression pattern in rat brain suggests a role in cell contact. The EMBO Journal, 7, 1365–1370.

    CAS  PubMed  Google Scholar 

  • Sofroniew, M. V., Cooper, J. D., Svendsen, C. N., Crossman, P., Ip, N. Y., Lindsay, R. M., et al. (1993). Atrophy but not death of adult septal cholinergic neurons after ablation of target capacity to produce mRNAs for NGF, BDNF, and NT3. The Journal of Neuroscience, 13, 5263–5276.

    CAS  PubMed  Google Scholar 

  • Sofroniew, M. V., Howe, C. L., & Mobley, W. C. (2001). Nerve growth factor signaling, neuroprotection, and neural repair. Annual Review of Neuroscience, 24, 1217–1281.

    Article  CAS  PubMed  Google Scholar 

  • Sokolov, M. V., & Kleschevnikov, A. M. (1995). Atropine suppresses associative LTP in the CA1 region of rat hippocampal slices. Brain Research, 672, 281–284.

    Article  CAS  PubMed  Google Scholar 

  • Stokin, G. B., Lillo, C., Falzone, T. L., Brusch, R. G., Rockenstein, E., Mount, S. L., et al. (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science, 307, 1282–1288.

    Article  CAS  PubMed  Google Scholar 

  • Svendsen, C. N., Kew, J. N., Staley, K., & Sofroniew, M. V. (1994). Death of developing septal cholinergic neurons following NGF withdrawal in vitro: Protection by protein synthesis inhibition. The Journal of Neuroscience, 14, 75–87.

    CAS  PubMed  Google Scholar 

  • Teipel, S. J., Flatz, W. H., Heinsen, H., Bokde, A. L., Schoenberg, S. O., Stockel, S., et al. (2005). Measurement of basal forebrain atrophy in Alzheimer's disease using MRI. Brain, 128, 2626–2644.

    Article  PubMed  Google Scholar 

  • Toledano, A., & Alvarez, M. I. (2004). Lesions and dysfunctions of the nucleus basalis as Alzheimer's disease models: General and critical overview and analysis of the long-term changes in several excitotoxic models. Current Alzheimer Research, 1, 189–214.

    Article  CAS  PubMed  Google Scholar 

  • Tuszynski, M. H., Thal, L., Pay, M., Salmon, D. P., U, H. S., Bakay, R., et al. (2005). A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature Medicine, 11, 551–555.

    Article  CAS  PubMed  Google Scholar 

  • Umbriaco, D., Garcia, S., Beaulieu, C., & Descarries, L. (1995). Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus, 5, 605–620.

    Article  CAS  PubMed  Google Scholar 

  • Utsugisawa, K., Nagane, Y., Obara, D., & Tohgi, H. (2002). Over-expression of alpha7 nicotinic acetylcholine receptor induces sustained ERK phosphorylation and N-cadherin expression in PC12 cells. Molecular Brain Research, 106, 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Utsuki, T., Yu, Q. S., Davidson, D., Chen, D., Holloway, H. W., Brossi, A., et al. (2006). Identification of novel small molecule inhibitors of amyloid precursor protein synthesis as a route to lower Alzheimer's disease amyloid-beta peptide. The Journal of Pharmacology and Experimental Therapeutics, 318, 855–862.

    Article  CAS  PubMed  Google Scholar 

  • Valentino, R. J., & Dingledine, R. (1981). Presynaptic inhibitory effect of acetylcholine in the hippocampus. The Journal of Neuroscience, 1, 784–792.

    CAS  PubMed  Google Scholar 

  • Vannucchi, M. G., & Pepeu, G. (1995). Muscarinic receptor modulation of acetylcholine release from rat cerebral cortex and hippocampus. Neuroscience Letters, 190, 53–56.

    Article  CAS  PubMed  Google Scholar 

  • Vas, C., Rajkumar, S., Tanyakitpisal, P., & Chandra, V. (2001). When old age becomes a disease. WHO, Regional Office for South-East Asia. http://www.searo.who.int/en/Section1174/Section1199/Section1567_6740.htm.

  • Vertes, R. P., & Kocsis, B. (1997). Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience, 81, 893–926.

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova, O. S. (1995). Expression, control, and probable functional significance of the neuronal theta-rhythm. Progress in Neurobiology, 45, 523–583.

    Article  CAS  PubMed  Google Scholar 

  • Vizi, E. S., & Kiss, J. P. (1998). Neurochemistry and pharmacology of the major hippocampal transmitter systems: Synaptic and nonsynaptic interactions. Hippocampus, 8, 566–607.

    Article  CAS  PubMed  Google Scholar 

  • Vizi, E. S., Kobayashi, O., Torocsik, A., Kinjo, M., Nagashima, H., Manabe, N., et al. (1989). Heterogeneity of presynaptic muscarinic receptors involved in modulation of transmitter release. Neuroscience, 31, 259–267.

    Article  CAS  PubMed  Google Scholar 

  • Vizi, E. S., Ono, K., Adam-Vizi, V., Duncalf, D., & Foldes, F. F. (1984). Presynaptic inhibitory effect of Met-enkephalin on [14C] acetylcholine release from the myenteric plexus and its interaction with muscarinic negative feedback inhibition. The Journal of Pharmacology and Experimental Therapeutics, 230, 493–499.

    CAS  PubMed  Google Scholar 

  • Walsh, T. J., Herzog, C. D., Gandhi, C., Stackman, R. W., & Wiley, R. G. (1996). Injection of IgG 192-saporin into the medial septum produces cholinergic hypofunction and dose-dependent working memory deficits. Brain Research, 726, 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Wei, J., Walton, E. A., Milici, A., & Buccafusco, J. J. (1994). m1–m5 muscarinic receptor distribution in rat CNS by RT-PCR and HPLC. Journal of Neurochemistry, 63, 815–821.

    Article  CAS  PubMed  Google Scholar 

  • Wenk, G. L. (1997). The nucleus basalis magnocellularis cholinergic system: One hundred years of progress. Neurobiology of Learning and Memory, 67, 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Wessendorf, M. W. (1991). Fluoro-Gold: Composition, and mechanism of uptake. Brain Research, 553, 135–148.

    Article  CAS  PubMed  Google Scholar 

  • White, A. R., Reyes, R., Mercer, J. F., Camakaris, J., Zheng, H., Bush, A. I., et al. (1999). Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Research, 842, 439–444.

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., & DeLong, M. R. (1981). Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Annals of Neurology, 10, 122–126.

    Article  CAS  PubMed  Google Scholar 

  • Wilkie, G. I., Hutson, P., Sullivan, J. P., & Wonnacott, S. (1996). Pharmacological characterization of a nicotinic autoreceptor in rat hippocampal synaptosomes. Neurochemical Research, 21, 1141–1148.

    Article  CAS  PubMed  Google Scholar 

  • Winblad, B., Giacobini, E., Froelich, E., Bruinsma, G., Walters, E., & Friedhoff, L. (2006). Double-blind, placebo-controlled evaluation of the safety and efficacy of phenserine tartrate (pt) for the treatment of mild to moderate Alzheimer's disease (AD). Paper presented at the 9th International Geneva/Springfield Symposium on Advances in Alzheimer Therapy, Geneva.

    Google Scholar 

  • Winkler, J., Ramirez, G. A., Kuhn, H. G., Peterson, D. A., Day-Lollini, P. A., Stewart, G. R., et al. (1997). Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Annals of Neurology, 41, 82–93.

    Article  CAS  PubMed  Google Scholar 

  • Winters, B. D., & Dunnett, S. B. (2004). Selective lesioning of the cholinergic septo-hippocampal pathway does not disrupt spatial short-term memory: A comparison with the effects of fimbria-fornix lesions. Behavioral Neuroscience, 118, 546–562.

    Article  PubMed  Google Scholar 

  • Wisniewski, K. E., Dalton, A. J., McLachlan, C., Wen, G. Y., & Wisniewski, H. M. (1985). Alzheimer's disease in Down's syndrome: Clinicopathologic studies. Neurology, 35, 957–961.

    CAS  PubMed  Google Scholar 

  • Wolf, B. A., Wertkin, A. M., Jolly, Y. C., Yasuda, R. P., Wolfe, B. B., Konrad, R. J., et al. (1995). Muscarinic regulation of Alzheimer's disease amyloid precursor protein secretion and amyloid beta-protein production in human neuronal NT2N cells. The Journal of Biological Chemistry, 270, 4916–4922.

    Article  CAS  PubMed  Google Scholar 

  • Wong, T. P., Debeir, T., Duff, K., & Cuello, A. C. (1999). Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes. The Journal of Neuroscience, 19, 2706–2716.

    CAS  PubMed  Google Scholar 

  • Wonnacott, S. (1997). Presynaptic nicotinic ACh receptors. Trends in Neurosciences, 20, 92–98.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y., Ye, L., Zhang, X., Cui, W., Lou, J., Nagai, T., et al. (2005). Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: In vitro and in vivo studies. Journal of Controlled Release, 105, 106–119.

    Article  CAS  PubMed  Google Scholar 

  • Yoder, R. M., & Pang, K. C. (2005). Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus, 15, 381–392.

    Article  CAS  PubMed  Google Scholar 

  • Zaborszky, L., Pang, K., Somogyi, J., Nadasdy, Z., & Kallo, I. (1999). The basal forebrain corticopetal system revisited. Annals of the New York Academy of Sciences, 877, 339–367.

    Article  CAS  PubMed  Google Scholar 

  • Zaccaro, M. C., Lee, H. B., Pattarawarapan, M., Xia, Z., Caron, A., L'Heureux, P. J., et al. (2005). Selective small molecule peptidomimetic ligands of TrkC and TrkA receptors afford discrete or complete neurotrophic activities. Chemistry and Biology, 12, 1015–1028.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, W. H., Bastianetto, S., Mennicken, F., Ma, W., & Kar, S. (2002). Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience, 115, 201–211.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Jiang, M., Trumbauer, M. E., Hopkins, R., Sirinathsinghji, D. J., Stevens, K. A., et al. (1996). Mice deficient for the amyloid precursor protein gene. Annals of the New York Academy of Sciences, 777, 421–426.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Valletta, J. S., Grimes, M. L., & Mobley, W. C. (1995). Multiple levels for regulation of TrkA in PC12 cells by nerve growth factor. Journal of Neurochemistry, 65, 1146–1156.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Salehi, A., Kleshevnikov, A., Mobley, W.C. (2007). Cholinergic Neurodegeneration in Alzheimer's Disease: Basis for Nerve Growth Factor Therapy. In: Pharmacological Mechanisms in Alzheimer's Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71522-3_5

Download citation

Publish with us

Policies and ethics