Skip to main content

Injectable Synthetic Extracellular Matrices for Tissue Engineering and Repair

  • Conference paper
Tissue Engineering

Abstract

The development of novel biointeractive hydrogels for tissue engineering13, tissue repair, and release of drugs4 and growth factors5 has attracted considerable attention over the past decade. Our attention has focused on hydrogels based on the extracellular matrix (ECM), a heterogeneous collection of covalent and noncovalent molecular interactions comprised primary of proteins and glycosaminoglycans (GAGs)6. In the ECM, covalent interactions connect chondroitin sulfate (CS), heparan sulfate (HS) and other sulfated GAGs to core proteins forming proteoglycans (PGs). Noncovalent interactions include binding of link modules of PGs to hyaluronan (HA), electrostatic associations with ions, hydration of the polysaccharide chains, and triple helix formation to generate collagen fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.5. References

  1. Lee, K. & Mooney, D. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879 (2001).

    Article  Google Scholar 

  2. Sakiyama-Elbert, S. & Hubbell, J.A. Functional biomaterials: design of novel biomaterials. Annu. Rev. Mater. Res. 31, 183–201 (2001).

    Article  Google Scholar 

  3. Anseth, K.S. et al. In situ forming degradable networks and their application in tissue engineering and drug delivery. J. Control. Release 78, 199–209 (2002).

    Article  Google Scholar 

  4. Langer, R. Biomaterial in drug delivery and tissue engineering: one laboratory’s experience. Acc. Chem. Res. 33, 94–101 (2000).

    Article  Google Scholar 

  5. Lee, K.Y., Peters, M.C., Anderson, K.W. & Mooney, D.J. Controlled growth factor release from synthetic extracellular matrices. Nature 408, 998–1000 (2000).

    Article  Google Scholar 

  6. Knudson, C.B. & Knudson, W. Cartilage proteoglycans. Semin. Cell Dev. Biol. 12, 69–78 (2001).

    Article  Google Scholar 

  7. Toole, B.P. Hyaluronan in morphogenesis. Semin. Cell Dev. Biol. 12, 79–87 (2001).

    Article  Google Scholar 

  8. Prestwich, G.D. et al. Chemically modified hyaluronan: New biomaterials and probes for cell biology. in New Frontiers in Medical Sciences: Redefining Hyaluronan (ed. Weigel, P.H.) 181–194 (Elsevier Science, Padua, Italy, 2000).

    Google Scholar 

  9. Vercruysse, K.P. & Prestwich, G.D. Hyaluronate derivatives in drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 15, 513–555 (1998).

    Google Scholar 

  10. Luo, Y. & Prestwich, G.D. Novel biomaterials for drug delivery. Exp. Opin. Ther. Patents 11, 1395–1410 (2001).

    Article  Google Scholar 

  11. Luo, Y. & Prestwich, G.D. Cancer-targeted polymeric drugs. Curr. Cancer Drug Targ. 2, 209–226 (2002).

    Article  Google Scholar 

  12. Prestwich, G.D. Biomaterials from chemically-modified hyaluronan. Glycoforum http://glycoforum.gr.jp/science/hyaluronan/HA18/HA18E.html (2001).

    Google Scholar 

  13. Shu, X.Z. & Prestwich, G.D. Therapeutic biomaterials from chemically modified hyaluronan. in Chemistry and Biology of Hyaluronan (ed. Hales, C.A.) 475–504 (Elsevier Press, Amsterdam, 2004).

    Google Scholar 

  14. Shu, X.Z., Liu, Y., Palumbo, F., Luo, Y. & Prestwich, G.D. In situ crosslinkable glycosaminoglycan hydrogels for tissue engineering. Biomaterials 25, 1139–1348 (2004).

    Google Scholar 

  15. Kirker, K.R., Luo, Y., Nielson, J.H., Shelby, J. & Prestwich, G.D. Glycosaminoglycan hydrogel films as biointeractive dressings for wound healing. Biomaterials 23, 3661–3671 (2002).

    Article  Google Scholar 

  16. Kirker, K.R., Luo, Y., Morris, S.E., Shelby, J. & Prestwich, G.D. Glycosaminoglycan hydrogel films as supplemental wound dressings for donor sites. J. Burn Care Rehabil. 25, 276–286 (2004).

    Article  Google Scholar 

  17. Proctor, M. et al. Composition of hyaluronan affects wound healing in the rabbit maxillary sinus. Am. J. Rhinology, in press (2005).

    Google Scholar 

  18. Gilbert, M.E. et al. Chrondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. Laryngoscope 114, 1406–1409 (2004).

    Article  Google Scholar 

  19. Liu, Y., Li, H., Shu, X.Z., Gray, S.D. & Prestwich, G.D. Crosslinked hyaluronan hydrogels containing mitomycin C reduce post-operative abdominal adhesions. Fertil. & Steril. 83, 1275–1283 (2005).

    Article  Google Scholar 

  20. Hansen, J.K., Thibeault, S.L., Walsh, J.F., Shu, X.Z. & Prestwich, G.D. In vivo engineering of the vocal fold ECM with injectable HA hydrogels: Early effects on tissue repair and biomechanics in a rabbit model. Ann. Otol. Rhinol. Laryngol. 114, 662–670 (2005).

    Google Scholar 

  21. Sondrup, C., Liu, Y., Shu, X.Z., Prestwich, G.D. & Smith, M.E. Bioactive stents in the prevention of airway stenosis. Otolaryngol. Head & Neck Surg., in press (2005).

    Google Scholar 

  22. Pouyani, T. & Prestwich, G.D. Functionalized derivatives of hyaluronic acid oligosaccharides: Drug carriers and novel biomaterials. Bioconjugate Chem. 5, 339–347 (1994).

    Article  Google Scholar 

  23. Pouyani, T., Harbison, G.S. & Prestwich, G.D. Novel hydrogels of hyaluronic acid: Synthesis, surface morphology, and solid-state NMR. J. Am. Chem. Soc. 116, 7515–7522 (1994).

    Article  Google Scholar 

  24. Vercruysse, K.P., Marecak, D.M., Marecek, J.F. & Prestwich, G.D. Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjugate Chem. 8, 686–694 (1997).

    Article  Google Scholar 

  25. Shu, X.Z., Liu, Y., Luo, Y., Roberts, M.C. & Prestwich, G.D. Disulfide crosslinked hyaluronan hydrogels. Biomacromolecules 3, 1304–1311 (2002).

    Article  Google Scholar 

  26. Liu, Y., Shu, X.Z. & Prestwich, G.D. Biocompatibility and stability of disulfide-crosslinked hyaluronan films. Biomaterials 26, 4737–4746 (2005).

    Article  Google Scholar 

  27. Ghosh, K. et al. Rheological characterization of in situ crosslinkable hyaluronan hydrogels. Biomacromolecules 6, 2857–2865 (2005).

    Article  Google Scholar 

  28. Shu, X.Z., Liu, Y., Palumbo, F. & Prestwich, G.D. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: A covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 24, 3825–3834 (2003).

    Article  Google Scholar 

  29. Shu, X.Z. et al. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J. Biomed. Mat. Res. 68A, 365–375 (2004).

    Article  Google Scholar 

  30. Ghosh, K., Ren, X.-D., Shu, X.Z., Prestwich, G.D. & Clark, R.A.F. Fibronectin functional domains coupled to hyaluronan stimulate primary human dermal fibroblast responses critical for wound healing. Tissue Eng., in press (2005).

    Google Scholar 

  31. Peattie, R.A. et al. Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials 25, 2789–2798 (2004).

    Article  Google Scholar 

  32. Peattie, R.A. et al. Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials, 27, 1868–1875 (2006).

    Article  Google Scholar 

  33. Cai, S., Liu, Y., Shu, X.Z. & Prestwich, G.D. Injectable glycosaminoglycan hydrogels for controlled release of basic fibroblast growth factor. Biomaterials 26, 6054–6067 (2005).

    Article  Google Scholar 

  34. Mironov, V. et al. Fabrication of tubular tissue construct by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan hydrogel. Biomaterials 26, 7628–7635 (2005).

    Article  Google Scholar 

  35. Prestwich, G.D., Liu, Y., Shu, X.Z. & Xu, Y. 3-D culture of tumors in vitro and in vivo in a synthetic extracellular matris. in American Association for Cancer Research (Anaheim, CA, 2005).

    Google Scholar 

  36. Li, H., Liu, Y., Shu, X.Z., Gray, S.D. & Prestwich, G.D. Synthesis and biological evaluation of a crosslinked hyaluronan-mitomycin C hydrogel. Biomacromolecules 5, 895–902 (2004).

    Article  Google Scholar 

  37. Duflo, S., Thibeault, S.L., Li, W., Shu, X.Z. & Prestwich, G.D. Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng., in press (2005).

    Google Scholar 

  38. Liu, Y. et al. Accelerated repair of cortical bone defects using a synthetic extracellular matrix to deliver human demineralized bone matrix. J. Orthoped. Res., in press (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Prestwich, G.D. et al. (2006). Injectable Synthetic Extracellular Matrices for Tissue Engineering and Repair. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics