Skip to main content

Kelvin Probe Force Microscopy of Semiconductors

  • Chapter

Abstract

Due to their technological importance, III–V compound semiconductors have been widely studied. While extensive work has been done on their geometric and electronic structure, Kelvin probe force microscopy (KPFM) in ultrahigh vacuum (UHV) creates the possibility to study the electronic structure of the surfaces on a nanometer scale [1]. The work function is one of the most important values characterizing the property of a surface. Chemical and physical phenomena taking place at the surface are strongly affected by the work function. In turn, the work function variation reflects physical and chemical changes of surface conditions [2]. For example, due to a localized dipole at atomic steps, the averaged work function on a metal surface decreases in proportion to the step density [3]. If molecules or atoms are adsorbed on a surface, the work function changes depending on the magnitude of the electric dipole formed by the adsorbates [2]. Although the work function is defined as a macroscopic concept, it is necessary to consider its microscopic local variations in understanding the details of the formation of semiconductor interfaces and device behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. R. Weaver and D. W. Abraham J. Vac. Sci. Technol. B 9(3), 1559 (1991).

    Article  CAS  Google Scholar 

  2. H. Lüth, Surfaces and Interfaces of Solid Materials, 3rd edn. (Springer, 1995).

    Google Scholar 

  3. K. Besocke, B. Krahl-Urban, and H. Wagner, Surface Science 68, 39 (1977).

    Article  CAS  Google Scholar 

  4. C. C. Williams, Annual Review of Materials Science 29, 471 (1999).

    Article  CAS  Google Scholar 

  5. P. De Wolf, M. Geva, T. Hantschel, W. Vandervorst, and R. B. Bylsma, Appl. Phys. Lett. 73, 2155 (1998).

    Article  Google Scholar 

  6. K. Maknys, O. Douheret, and S. Anand, Appl. Phys. Lett. 83, 4205 (2001).

    Article  Google Scholar 

  7. K. Maknys, O. Douheret, and S. Anand, Appl. Phys. Lett. 83, 2184 (2001).

    Article  Google Scholar 

  8. O. Douheret, S. Anand, Th. Glatzel, K. Maknys, and S. Sadewasser, Appl. Phys. Lett. 85, 5245 (2004).

    Article  CAS  Google Scholar 

  9. Ph. Ebert, Xun Chen, M. Heinrich, M. Simon, K. Urban, and M. G. Lagally, Phys. Rev. Lett. 76, 2089 (1996).

    Article  CAS  Google Scholar 

  10. Ph. Ebert, M. Heinrich, M. Simon, C. Domke, K. Urban, C. K. Shih, M. B. Webb, and M. G. Lagally, Phys. Rev. B 53, 4580 (1996).

    Article  CAS  Google Scholar 

  11. Ph. Ebert, P. Quadbeck, K. Urban, B. Henninger, K. Horn, G. Schwarz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett. 79, 2877 (2001).

    Article  CAS  Google Scholar 

  12. M. Heinrich, C. Domke, Ph. Ebert, and K. Urban, Phys. Rev. B 53, 10894 (1996).

    Article  CAS  Google Scholar 

  13. Ch. Sommerhalter, Th. W. Matthes, Th. Glatzel, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Appl. Phys. Lett. 75, 286 (1999).

    Article  CAS  Google Scholar 

  14. Th. Glatzel, S. Sadewasser, R. Shikler, Y. Rosenwaks, and M.Ch. Lux-Steiner, Mat. Sci. Engineer. B 102, 138 (2003).

    Article  Google Scholar 

  15. Y. Rosenwaks, R. Shikler, Th. Glatzel, and S. Sadewasser, Phys. Rev. B 70, 085320 (2004).

    Article  Google Scholar 

  16. A. Huijser, J. van Laar, and T. L. van Rooy, Surface Science 62, 472 (1977).

    Article  CAS  Google Scholar 

  17. J. van Laar, A. Huijser, and T. L. van Rooy, Journal of Vacuum Science and Technology 14, 894 (1977).

    Article  Google Scholar 

  18. H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer, J. Appl. Phys. 84, 1168 (1998).

    Article  CAS  Google Scholar 

  19. S. Belaidi, P. Girard, and G. Leveque, J. Appl. Phys. 81, 1023 (1997).

    Article  CAS  Google Scholar 

  20. A. Schwarzman, E. Grunbaum, E. Strassburg, E. Lepkifker, A. Boag, Th. Glatzel, Z. Barkay, M. Mazzer, K. Barnham, and Y. Rosenwaks, J. Appl. Phys. 98, 84310 (2005).

    Article  Google Scholar 

  21. N. J. Ekins-Daukes, J. M. Barnes, K. W. J. Barnham, J. P. Connolly, M. Mazzer, J. C. Clark, R. Grey, G. Hill, M. A. Pate, and J. S. Roberts, Solar Energy Materials and Solar Cells 68, 71 (2001).

    Article  CAS  Google Scholar 

  22. K. W. J. Barnham, P. Abbott, I. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. Tibbits, R. Airey, G. Hill, and J. S. Roberts, Proc. 3rd World Conference on Photovoltaic Energy Conversion (Osaka, Japan, 2003).

    Google Scholar 

  23. K. W. J. Barnham, I. Ballard, J. G. Connolly, N. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, and M. Mazzer, J. Mat. Sci.: Mat. Elec. 11, 531 (2000).

    Article  CAS  Google Scholar 

  24. K. W. J. Barnham, I. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, and C. Rohr, Physica E 14, 27 (2002).

    Article  CAS  Google Scholar 

  25. Z. Barkay, E. Grünbaum, Y. Shapira, Inst. Phys. Conf. Ser. 179, 143 (2003).

    Google Scholar 

  26. R. Klenk, Thin Solid Films 387, 135 (2001).

    Article  CAS  Google Scholar 

  27. C.-S. Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero, and M. M. Al-Jassim, Appl. Phys. Lett. 82, 127 (2003).

    Article  CAS  Google Scholar 

  28. C.-S. Jiang, R. Noufi, J. A. AbuShama, K. Ramanathan, H. R. Moutinho, J. Pankow, and M. M. Al-Jassim, Appl. Phys. Lett. 84, 3477 (2004).

    Article  CAS  Google Scholar 

  29. C.-S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, Appl. Phys. Lett. 85, 2625 (2004).

    Article  CAS  Google Scholar 

  30. Th. Glatzel, S. von Roon, S. Sadewasser, R. Klenk, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Proc. 17th EPVSEC, Munich, Germany, p. 1151 (2001).

    Google Scholar 

  31. Th. Glatzel, and D. Fuertes Marron, Th. Schedel-Niedrig, S. Sadewasser, and M. Ch. Lux-Steiner, Appl. Phys. Lett. 81, 2017 (2002).

    Article  CAS  Google Scholar 

  32. Th. Glatzel, H. Steigert, R. Klenk, M. Ch. Lux-Steiner, T. P. Niesen, and S. Visbeck, Technical Digest of the 14th Photovoltaic Solar Energy Conference PVSEC, vol. 2, p. 707 (Bangkok, Thailand, 2004).

    Google Scholar 

  33. D. Fuertes Marrón, Th. Glatzel, A. Meeder, Th. Schedel-Niedrig, S. Sadewasser, and M. Ch. Lux-Steiner, Appl. Phys. Lett. 85(17), 3755–3757 (2004).

    Article  Google Scholar 

  34. D. Fuertes Marrón, S. Sadewasser, A. Meeder, Th. Glatzel, and M. Ch. Lux-Steiner, Phys. Rev. B, 17(2) 033306 (2005).

    Article  Google Scholar 

  35. S. Sadewasser, Th. Glatzel, M. Rusu, A. Meeder, D. Fuertes Marrón, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Mat. Res. Soc. Symp. Proc. Vol. 668, p. H5.4.1 (2001).

    Google Scholar 

  36. S. Sadewasser, Th. Glatzel, M. Rusu, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Proc. of the 17th Photovoltaic Solar Energy Conf., Munich, Germany, p. 1155 (2001).

    Google Scholar 

  37. S. Sadewasser, Th. Glatzel, M. Rusu, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Appl. Phys. Lett. 80, 2979 (2002).

    Article  CAS  Google Scholar 

  38. S. Sadewasser, Th. Glatzel, S. Schuler, S. Nishiwaki, R. Kaigawa, and M. Ch. Lux-Steiner, Thin Solid Films 431–432, 257 (2003).

    Article  Google Scholar 

  39. Ch. Sommerhalter, S. Sadewasser, Th. Glatzel, Th. W. Matthes, A. Jäger-Waldau, and M. Ch. Lux-Steiner, Surf. Sci. 482–485, 1362 (2001).

    Article  Google Scholar 

  40. G. Hanna, Th. Glatzel, S. Sadewasser, N. Ott, H. P. Strunk, U. Rau, and J. H. Werner, accepted Appl. Phys. A.

    Google Scholar 

  41. L. Kronik, L. Burstein, M. Leibovitch, Y. Shapira, D. Gal, E. Moons, J. Beier, G. modes, D. Cahen, D. Hariskos, R. Klenk, and H.-W. Schock, Appl. Phys. Lett. 67, 1405 (1995).

    Article  CAS  Google Scholar 

  42. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, Progr. Photovolt. 7, 311 (1999).

    Article  CAS  Google Scholar 

  43. A. Klein, T. Loher, C. Pettenkofer, and W. Jägermann J. Appl. Phys. 80, 5039 (1996).

    Article  CAS  Google Scholar 

  44. Th. Glatzel, H. Steigert, S. Sadewasser, R. Klenk, and M. Ch. Lux-Steiner, Thin Solid Films 480–481, 177–182 (2005).

    Article  Google Scholar 

  45. D. Fuertes Marrón, A. Meeder, S. Sadewasser, R. Würz, C. A. Kaufmann, Th. Glatzel, Th. Schedel-Niedrig, and M. Ch. Lux-Steiner, J. Appl. Phys. 97, 094915 (2005).

    Article  Google Scholar 

  46. W. Mönch, Semiconductor Surfaces and Interfaces, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  47. V. V. Zavyalov, J. S. McMurray, and C. C. Williams, J. Appl. Phys. 85, 7774 (1999).

    Article  CAS  Google Scholar 

  48. J. Yang, and F. C. Kong, J. App. Phys. Lett. 81, 4973 (2002).

    Article  CAS  Google Scholar 

  49. P. Eyben, M. Xu, N. Duhayon, T. Clarysse, S. Callewaert, W. Vandervorst, and J. Vac. Sci. Tech. B 20, 471 (2002).

    Article  CAS  Google Scholar 

  50. For a comprehensive review of surface photovoltage phenomena see L. Kronik, Y. Shapira, Surf. Sci. Rep. 37, 1 (1999).

    Article  CAS  Google Scholar 

  51. S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer-Verlag, New York-Wien (1984).

    Google Scholar 

  52. R. Williams, J. Phys. Chem. Solids 23, 1057 (1962).

    Article  CAS  Google Scholar 

  53. A. Vilan, A. Shanzer, and D. Cahen, Nature 404, 166 (2000).

    Article  CAS  Google Scholar 

  54. A. A. Asuha, O. Maida, Y. Todokoro, and H. Kobayashi, Appl. Phys. Lett. 80, 4552 (2002).

    Article  Google Scholar 

  55. A. Nitzan and M. A. Ratner, Science 300, 1384 (2003).

    Article  CAS  Google Scholar 

  56. N. P. Guisinger, M. E. Greene, R. Basu, A. S. Baluch, and M. C. Hersam, Nano Lett. 4, 55 (2004).

    Article  CAS  Google Scholar 

  57. E. H. Nicollian and J. R. Brews, MOS Physics and Technology (John Wiley & Sons, 1982).

    Google Scholar 

  58. L. Kronik, L. Burstein, and Y. Shapira, Appl. Phys. Lett. 63, 60 (1993).

    Article  CAS  Google Scholar 

  59. R. J. Hamers, Ann. Rev. Phys. Chem. 40, 531 (1989).

    Article  CAS  Google Scholar 

  60. S. Saraf and Y. Rosenwaks, Surface Science Letters 574, L35 (2005).

    Article  CAS  Google Scholar 

  61. R. Shikler, T. Meoded, N. Fried, and Y. Rosenwaks, Appl. Phys. Lett. 74, 2972 (1999).

    Article  CAS  Google Scholar 

  62. H. Flietner, Surface Science 200, 463 (1988).

    Article  CAS  Google Scholar 

  63. W. Fussel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, Nuclear Instruments and Methods in Physics Research A 377, 177 (1996).

    Article  Google Scholar 

  64. E. H. Poindexter, G. J. Gerardi, M. E. Rucckel, P. J. Caplan, N. M. Johnson, and D. K. Bregelsen, J. Appl. Phys. 56, 2844 (1984).

    Article  CAS  Google Scholar 

  65. R. Shikler, T. Meoded, N. Fried, and Y. Rosenwaks, Phys. Rev. B 61, 11041 (2000).

    Article  CAS  Google Scholar 

  66. R. Shikler, T. Meoded, N. Fried, and Y. Rosenwaks, J. Appl. Phys. 86, 107 (1999).

    Article  CAS  Google Scholar 

  67. L. Burgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, J. Appl. Phys. 94, 6129, (2003).

    Article  CAS  Google Scholar 

  68. L. Burgi, H Sirringhaus, and R. H. Friend, Appl. Phys. Lett. 80, 2913 (2002).

    Article  CAS  Google Scholar 

  69. G. Paasch, H. Peisert, M. Knupfer, J. Fink, and S. Scheinert, J. Appl. Phys. 93, 6084 (2003).

    Article  CAS  Google Scholar 

  70. A. Kahn, N. Koch, and G. Weiying, J. Poly. Sci. B. 41, 2529 (2003).

    Article  CAS  Google Scholar 

  71. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mat. 11, 605 (1999).

    Article  CAS  Google Scholar 

  72. H. Ishii and K. Seki, IEEE Trans. Electron Devices 44, 1295 (1997).

    Article  CAS  Google Scholar 

  73. W. D. Grobman and E. E. Koch, Photoemission in Solids, Vol. 2 (Eds: L. Ley, M. Cardona), Springer, Berlin, 261 (1979).

    Google Scholar 

  74. K. Seki, H. Oji, N. Hayashi, Y. Ouchi, and H. Ishii, Proc. SPIE 3797, 178 (1999).

    Article  CAS  Google Scholar 

  75. Except for the AFM feedback laser, which operates at 1.85 eV, smaller then the optical gap of Alq3 (∼3.2 eV) but larger than the metal/Alq3 barriers. Sample illumination was minimized by tip shielding and reducing the laser intensity; no changes in CPD were observed using different laser intensities.

    Google Scholar 

  76. C. Shen and A. Kahn, Organic Electronics 2, 89 (2001).

    Article  Google Scholar 

  77. S. C. Jr. Fain, L. V. Corbin II, and J. M. McDavid, Rev of Sci. Ins. 47, 345 (1976).

    Article  CAS  Google Scholar 

  78. J. M. Heras and E. V. Albano, Zeitschrift fur Physikalische Chemie Neue Folge, 129, 11 (1982).

    CAS  Google Scholar 

  79. I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Jr. Pascal, Chem. Phys. Let. 327, 3, (2000).

    Article  Google Scholar 

  80. A. Rajagopal, C. I. Wu, and A. Kahn, J. Appl. Phys. 83, 2649 (1998).

    Article  CAS  Google Scholar 

  81. S. Belaidi, F. Lebon, P. Girard, G. Leveque, and S. Pagano, Appl. Phys. A 66, S239 (1998).

    Article  CAS  Google Scholar 

  82. S. Hudlet, M. Saint Jean, B. Roulet, J. Berger, and C. Guthmann, J. Appl. Phys. 59, 3308 (1995).

    Article  Google Scholar 

  83. S. Karg, J. Steiger, and H. von Seggern, Synthetic Metals 111, 277 (2000).

    Article  Google Scholar 

  84. N. Hayashi, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 92, 3784, (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rosenwaks, Y., Saraf, S., Tal, O., Schwarzman, A., Glatzel, T., Lux-Steiner, M.C. (2007). Kelvin Probe Force Microscopy of Semiconductors. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_25

Download citation

Publish with us

Policies and ethics