Skip to main content

Immune Receptor Signaling, Aging and Autoimmunity

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 640))

Abstract

Aging is associated with a myriad of changes including alterations in glucose metabolism, brain function, hormonal regulation, muscle homeostasis and the immune system. Aged individuals, generally still defined as over 65 years old, differ from middle-aged or young donors in many features of the immune system. The major observation is that the elderly population is not able to cope with infections as well as younger adults and recovery generally takes longer. Moreover, some diseases first appear with advancing age and are likely associated with dysfunction of the immune system. Thus, Alzheimer’s disease, atherosclerosis, type II diabetes and some autoimmune disorders are linked to changes in immune function. One major immune cell population implicated as being responsible for the initiation and chronicity of immune dysfunction leading to diseases or immunosuppression is the T-cell. Although many changes in B-cell and innate immune function in aging are associated with the appearance of disease, they are not as well studied and clearly demarcated as changes in the T-cell compartment. The adaptive immune system is coordinated by T-cells, the activation of which is required for the initiation, maintenance and termination of responses against pathogens. Changes in the expression and functions of the T-cell receptor (TCR) for antigen and its co-receptors are closely associated with immunosenescence. Certain similar changes have also been found in some other disease states, e.g., rheumatoid arthritis, systemic lupus erythematosus and cancer. In this chapter, we will summarize our knowledge about multichain immune recognition receptor signaling, mainly the TCR, in aging and autoimmune diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crews DE, Zavotka S. Aging, disability and frailty: Implications for universal design. J Physiol Anthropol 2006; 25:113–8.

    Article  PubMed  Google Scholar 

  2. Wiet SG. Future of caring for an aging population: Trends, technology and caregiving. Stud Health Technol Inform 2005; 118:220–30.

    PubMed  Google Scholar 

  3. Webster RG. Immunity to influenza in the elderly. Vaccine 2000; 18:1686–9.

    Article  PubMed  CAS  Google Scholar 

  4. Levy R. Costs and benefits of pharmaceuticals: The value equation for older Americans. Care Manag J 2002; 3:135–42.

    Article  PubMed  Google Scholar 

  5. Pawelec G, Adibzadeh M, Solana R et al. The T-cell in the ageing individual. Mech Ageing Dev 1997; 93:35–45.

    Article  PubMed  CAS  Google Scholar 

  6. Pawelec G. Immunosenescence and human longevity. Biogerontology 2003; 4:167–70.

    Article  PubMed  CAS  Google Scholar 

  7. Makinodan T. Nature of the dechne in antigen-induced hmnoral immunity with age. Mech Ageing Dev 1980; 14:165–72.

    Article  PubMed  CAS  Google Scholar 

  8. Aspinall R, Andrew D. Thymic involution in aging. J Clin Immunol 2000; 20:250–6.

    Article  PubMed  CAS  Google Scholar 

  9. Pawelec G, Akbar A, Caruso C et al. Human immunosenescence: Is it infectious? Immunol Rev 2005; 205:257–68.

    Article  PubMed  CAS  Google Scholar 

  10. Linton PJ, Haynes L, Tsui L et al. From naive to effector-alterations with aging. Immunol Rev 1997; 160:9–18.

    Article  PubMed  CAS  Google Scholar 

  11. Vallejo AN, Brandes JC, Weyand CM et al. Modulation of CD28 expression: Distinct regulatory pathways during activation and replicative senescence. J Immunol 1999; 162:6572–9.

    PubMed  CAS  Google Scholar 

  12. Dennett NS, Barcia RN, McLeod JD. Age associated decline in CD25 and CD28 expression correlate with an increased susceptibility to CD95 mediated apoptosis in T-cells. Exp Gerontol 2002; 37:271–83.

    Article  PubMed  CAS  Google Scholar 

  13. Sandmand M, Bruunsgaard H, Kemp K et al. Is ageing associated with a shift in the balance between Type 1 and Type 2 cytokines in humans? Clin Exp Immunol 2002; 127:107–14.

    Article  PubMed  CAS  Google Scholar 

  14. Effros RB, Dagarag M, Spaulding C et al. The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 2005; 205:147–57.

    Article  PubMed  CAS  Google Scholar 

  15. Fulop T, Larbi A, Wikby A et al. Dysregulation of T-cell function in the elderly: Scientific basis and clinical implications. Drugs Aging 2005; 22:589–603.

    Article  PubMed  Google Scholar 

  16. van Dijk-Hard I, Soderstrom I, Feld S et al. Age-related impaired affinity maturation and differential D-JH gene usage in human VH6-expressing B lymphocytes from healthy individuals. Eur J Immunol 1997; 27:1381–6.

    Article  PubMed  Google Scholar 

  17. Miller JP, Allman D. Linking age-related defects in B lymphopoiesis to the aging of hematopoietic stem cells. Semin Immunol 2005; 17:321–9.

    Article  PubMed  CAS  Google Scholar 

  18. Mocchegiani E, Malavolta M. NK and NKT-cell functions in immunosenescence. Aging Cell 2004; 3:177–84.

    Article  PubMed  CAS  Google Scholar 

  19. DelaRosa O, Tarazona R, Casado JG et al. Valpha24+ NKT-cells are decreased in elderly humans. Exp Gerontol 2002; 37:213–7.

    Article  PubMed  CAS  Google Scholar 

  20. Sebastian C, Espia M, Serra M et al. MacrophAging: A cellular and molecular review. Immunobiology 2005; 210:121–6.

    Article  PubMed  CAS  Google Scholar 

  21. Fulop T, Larbi A, Douziech N et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell 2004; 3:217–26.

    Article  PubMed  CAS  Google Scholar 

  22. Franceschi C, Bonafe M, Valensin S et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 908:244–54.

    Article  PubMed  CAS  Google Scholar 

  23. Garcia GG, Miller RA. Single-cell analyses reveal two defects in peptide-specific activation of naive T-cells from aged mice. J Immunol 2001; 166:3151–7.

    PubMed  CAS  Google Scholar 

  24. FulopJr T, Gagne D, Goulet AC et al. Age-related impairment of p561ck and ZAP-70 activities in human T lymphocytes activated through the TcR/CD3 complex. Exp Gerontol 1999; 34:197–216.

    Article  PubMed  CAS  Google Scholar 

  25. Kawanishi H. Activation of calcium (Ca)-dependent protein kinase C in aged mesenteric lymph node T and B-cells. Immunol Lett 1993; 35:25–32.

    Article  PubMed  CAS  Google Scholar 

  26. Whisler RL, Newhouse YG, Bagenstose SE. Age-related reductions in the activation of mitogen-activated protein kinases p44mapk/ERKl and p42mapk/ERK2 in human T-cells stimulated via ligation of the T-cell receptor complex. Cell Immunol 1996; 168:201–10.

    Article  PubMed  CAS  Google Scholar 

  27. Mustelin T, Rahmouni S, Bottini N et al. Role of protein tyrosine phosphatases in T-cell activation. Immunol Rev 2003; 191:139–47.

    Article  PubMed  CAS  Google Scholar 

  28. Altin JG, Sloan EK. The role of CD45 and CD45-associated molecules in T-cell activation. Immunol Cell Biol 1997; 75:430–45.

    Article  PubMed  CAS  Google Scholar 

  29. Whisler RL, Bciqing L, Chen M. Age-related decreases in IL-2 production by human T-cells are associated with impaired activation of nuclear transcriptional factors AP-1 and NF-AT. Cell Immunol 1996; 169:185–95.

    Article  PubMed  CAS  Google Scholar 

  30. Ponnappan S, Uken-Trebilcock G, Lindquist M et al. Tyrosine phosphorylation-dependent activation of NFkappaB is compromised in T-cells from the elderly. Exp Gerontol 2004; 39:559–66.

    Article  PubMed  CAS  Google Scholar 

  31. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387:569–72.

    Article  PubMed  CAS  Google Scholar 

  32. Janes PW, Ley SC, Magec AI. Aggregation of lipid rafts accompanies signaling via the T-cell antigen receptor. J Cell Biol 1999; 147:447–61.

    Article  PubMed  CAS  Google Scholar 

  33. Hancock JF. Lipid rafts: Contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 2006; 7:456–62.

    Article  PubMed  CAS  Google Scholar 

  34. Kusumi A, Suzuki K. Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 2005; 1746:234–51.

    Article  PubMed  CAS  Google Scholar 

  35. Balamuth F, Brogdon JL, Bottomly K. CD4 raft association and signaling regulate molecular clustering at the immunological synapse site. J Immunol 2004; 172:5887–92.

    PubMed  CAS  Google Scholar 

  36. Manes S, Viola A. Lipid rafts in lymphocyte activation and migration. Mol Membr Biol 2006; 23:59–69.

    Article  PubMed  CAS  Google Scholar 

  37. Huber LA, Xu QB, Jurgens G et al. Correlation of lymphocyte lipid composition membrane microvis-cosity and mitogen response in the aged. Eur J Immunol 1991; 21:2761–5.

    Article  PubMed  CAS  Google Scholar 

  38. Simons K, Ehehalt R. Cholesterol, lipid rafts and disease. J Clin Invest 2002; 110:597–603.

    PubMed  CAS  Google Scholar 

  39. Garcia GG, Miller RA. Single-cell analyses reveal two defects in peptide-specific activation of naive T-cells from aged mice. J Immunol 2001; 166:3151–7.

    PubMed  CAS  Google Scholar 

  40. Larbi A, Douziech N, Khalil A et al. Effects of methyl-beta-cyclodextrin on T lymphocytes lipid rafts with aging. Exp Gerontol 2004; 39:551–8.

    Article  PubMed  CAS  Google Scholar 

  41. Larbi A, Douziech N, Dupuis G et al. Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes. J Leukoc Biol 2004; 75:373–81.

    Article  PubMed  CAS  Google Scholar 

  42. Kovacs B, Parry RV, Ma Z et al. Ligation of CD28 by its natural ligand CD86 in the absence of TCR stimulation induces lipid raft polarization in human CD4 T-cells. J Immimol 2005; 175:7848–54.

    CAS  Google Scholar 

  43. Resh MD. Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem 2004; 37:217–32.

    PubMed  CAS  Google Scholar 

  44. Himdt M, Tabata H, Jeon MS et al. Impaired activation and localization of LAT in anergic T-cells as a consequence of a selective palmitoylation defect. Immunity 2006; 24:513-22.

    Google Scholar 

  45. Larbi A, Dupuis G, Khalil A et al. Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal 2006; 18:1017–30.

    Article  PubMed  CAS  Google Scholar 

  46. Pike LJ. Lipid rafts: heterogeneity on the high seas. Biochem J 2004; 378:281–92.

    Article  PubMed  CAS  Google Scholar 

  47. Douglass AD, Vale RD. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T-cells. Cell 2005; 121:937–50.

    Article  PubMed  CAS  Google Scholar 

  48. Grauby-Heywang C, Turlet JM. Behavior of GM3 ganglioside in lipid monolayers mimicking rafts or fluid phase in membranes. Chem Phys Lipids 2006; 139:68–76.

    Article  PubMed  CAS  Google Scholar 

  49. Langhorst MF, Reuter A, Stuermer CA. Scaffolding microdomains and beyond: The function of reggie/ flotillin proteins. Cell Mol Life Sci 2005; 62:2228–40.

    Article  PubMed  CAS  Google Scholar 

  50. Henel G, Singh K, Cui D et al. Uncoupling of T-cell effector functions by inhibitory killer immuno-globulin-like receptors. Blood 2006; 107:4449–57.

    Article  PubMed  CAS  Google Scholar 

  51. Ouyang Q, Wagner WM, Voehringer D et al. Age-associated accumulation of CMV-specific CD8+ T-cells expressing the inhibitory killer cell lectin-like receptor Gl (KLRGl). Exp Gerontol 2003; 38:911–20.

    Article  PubMed  CAS  Google Scholar 

  52. Fortin CF, Larbi A, Lesur O et al. Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol 2006; 79:1061–72.

    Article  PubMed  CAS  Google Scholar 

  53. Rui L, Vinuesa CG, Blasioli J et al. Resistance to CpG DNA-induced autoimmunity through tolerogenic B-cell antigen receptor ERK signaling. Nat Immunol 2003; 4:594–600.

    Article  PubMed  CAS  Google Scholar 

  54. Samuels J, Ng YS, Coupillaud C et al. Impaired early B-cell tolerance in patients with rheumatoid arthritis. J Exp Med 2005; 201:1659–67.

    Article  PubMed  CAS  Google Scholar 

  55. Rifas L, Arackal S. T-cells regulate the expression of matrix metalloproteinase in human osteoblasts via a dual mitogen-activated protein kinase mechanism. Arthritis Rheimi 2003; 48:993–1001.

    Article  CAS  Google Scholar 

  56. Brennan F, Foey A. Cytokine regulation in RA synovial tissue: Role of T-cell/macrophage contact-dependent interactions. Arthritis Res 2002; 4:S177–82.

    Article  PubMed  Google Scholar 

  57. Romagnoli P, Strahan D, Pelosi M et al. A potential role for protein tyrosine kinase p56(lck) in rheu-matoid arthritis synovial fluid T lymphocyte hyporesponsiveness. Int Immunol 2001; 13:305–12.

    Article  PubMed  CAS  Google Scholar 

  58. Cope AP. Studies of T-cell activation in chronic inflammation. Arthritis Res 2002; 4:S197–211.

    Article  PubMed  Google Scholar 

  59. Lewis DE, Merched-Sauvage M, Goronzy JJ et al. Tumor necrosis factor-alpha and CD80 modulate CD28 expression through a similar mechanism of T-cell receptor-independent inhibition of transcription. J Biol Chem 2004; 279:29130–8.

    Article  PubMed  CAS  Google Scholar 

  60. Bruunsgaard H. Effects of tumor necrosis factor-alpha and interleukin-6 in elderly populations. Eur Cytokine Netw 2002; 13:389–91.

    PubMed  CAS  Google Scholar 

  61. Pavon EJ, Munoz P, Navarro MD et al. Increased association of CD38 with lipid rafts in T-cells from patients with systemic lupus erythematosus and in activated normal T-cells. Mol Immunol 2006; 43:1029–39.

    Article  PubMed  CAS  Google Scholar 

  62. Hadrup SR, Strindhall J, Kollgaard T et al. Longitudinal studies of clonally expanded CD8 T-cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomeg-alovirus-specific T-cells in the very elderly. J Immunol 2006; 176:2645–53.

    PubMed  CAS  Google Scholar 

  63. Nambiar MP, Mitchell JP, Ceruti RP et al. Prevalence of T-cell receptor zeta chain deficiency in systemic lupus erythematosus. Lupus 2003; 12:46–51.

    Article  PubMed  CAS  Google Scholar 

  64. Juang YT, Wang Y, Solomou EE et al. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J Clin Invest 2005; 115:996–1005.

    PubMed  CAS  Google Scholar 

  65. Krishnan S, Nambiar MP, Warke VG et al. Alterations in lipid raft composition and dynamics contribute to abnormal T-cell responses in systemic lupus erythematosus. J Immunol 2004; 172:7821–31.

    PubMed  CAS  Google Scholar 

  66. Jury EC, Kabouridis PS, Flores-Borja F et al. Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J Clin Invest 2004; 113:1176–87.

    PubMed  CAS  Google Scholar 

  67. Sibilia J. Novel concepts and treatments for autoimmune disease: Ten focal points. Joint Bone Spine 2004;71:511–7.

    Article  PubMed  Google Scholar 

  68. Shimpi S, Chauhan B, Shimpi P. Cyclodextrins: Application in different routes of drug administration. Acta Pharm 2005; 55:139–56.

    PubMed  CAS  Google Scholar 

  69. Groll AH, Wood L, Roden M et al. Safety, pharmacokinetics and pharmacodynamics of cyclodextrin itraconazole in pediatric patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 2002; 46:2554–63.

    Article  PubMed  CAS  Google Scholar 

  70. Johnson JL, He Y, Jain A et al. Improving cyclodextrin complexation of a new antihepatitis drug with glacial acetic acid. AAPS PharmSciTech 2006; 7:E18.

    Article  PubMed  Google Scholar 

  71. Ghorab MM, Abdel-Salam HM, El-Sayad MA et al. Tablet formulation containing meloxicam and beta-cyclodextrin: mechanical characterization and bioavailability evaluation. AAPS Pharm Sci Tech 2004; 5:e.59.

    Article  Google Scholar 

  72. Loftsson T, Masson M. Cyclodextrins in topical drug formulations: Theory and practice. Int J Pharm 2001; 225:15–30.

    Article  PubMed  CAS  Google Scholar 

  73. Magee T, Seabra MC. Fatty acylation and prenylation of proteins: What’s hot in fat. Curr Opin Cell Biol 2005; 17:190–6.

    Article  PubMed  CAS  Google Scholar 

  74. Garcia GG, Miller RA. Age-related defects in CD4+ T-cell activation reversed by glycoprotein endo-peptidase. Eur J Immunol 2003; 33:3464–72.

    Article  PubMed  CAS  Google Scholar 

  75. Cavaglieri CR, Nishiyama A, Fernandes LC et al. Differential effects of short-chain fatty acids on proliferation and production of pro-and anti-inflammatory cytokines by cultured lymphocytes. Life Sci 2003; 73:1683–90.

    Article  PubMed  CAS  Google Scholar 

  76. Zeyda M, Staffler G, Horejsi V et al. LAT displacement from lipid rafts as a molecular mechanism for the inhibition of T-cell signaling by polyunsaturated fatty acids. J Biol Chem 2002; 277:28418–23.

    Article  PubMed  CAS  Google Scholar 

  77. Stulnig TM, Berger M, Sigmund T et al. Polyunsaturated fatty acids inhibit T-cell signal transduction by modification of detergent-insoluble membrane domains. J Cell Biol 1998; 143:637–44.

    Article  PubMed  CAS  Google Scholar 

  78. Larbi A, Grenier A, Frisch F et al. Acute in vivo elevation of intravascular triacylglycerol lipolysis impairs peripheral T-cell activation in humans. Am J Clin Nutr 2005; 82:949–56.

    PubMed  CAS  Google Scholar 

  79. Caldcr PC. n-3 fatty acids, inflammation and immunity—Relevance to postsurgical and critically ill patients. Lipids 2004; 39:1147–61.

    Article  Google Scholar 

  80. Roberts SB, Rosenberg I. Nutrition and aging: Changes in the regulation of energy metabolism with aging. Physiol Rev 2006; 86:651–67.

    Article  PubMed  CAS  Google Scholar 

  81. Ouyang Q, Wagner WM, Wikby A et al. Compromised interferon gamma (IFN-gamma) production in the elderly to both acute and latent viral antigen stimulation: Contribution to the immune risk phenotype? Eur Cytokine Netw 2002; 13:392–4.

    PubMed  CAS  Google Scholar 

  82. Raulin J. Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy. Prog Lipid Res 2002; 41:27–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Larbi, A., Fülöp, T., Pawelec, G. (2008). Immune Receptor Signaling, Aging and Autoimmunity. In: Sigalov, A.B. (eds) Multichain Immune Recognition Receptor Signaling. Advances in Experimental Medicine and Biology, vol 640. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09789-3_21

Download citation

Publish with us

Policies and ethics