Skip to main content

Intravenous Infusions for Sedation: Rationale, State of the Art, and Future Trends

  • Chapter
  • First Online:
Pediatric Sedation Outside of the Operating Room

Abstract

When sedation outside of the operating room is required, possible routes of administration of sedative agents include the inhalational, oral, intranasal, intramuscular, and intravenous routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.opentci.org/doku.php. Accessed 6 December 2008.

References

  1. Corlett PR, Honey GD, Aitken MR, Dickinson A, Shanks DR, Absalom AR, et al. Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: linking cognition, brain activity, and psychosis. Arch Gen Psychiatry. 2006;63(6):611–21.

    Article  PubMed  Google Scholar 

  2. Honey GD, Corlett PR, Absalom AR, Lee M, Pomarol-Clotet E, Murray GK, et al. Individual differences in psychotic effects of ketamine are predicted by brain function measured under placebo. J Neurosci. 2008;28(25):6295–303.

    Article  PubMed  CAS  Google Scholar 

  3. Ledingham IM, Watt I. Influence of sedation on mortality in critically ill multiple trauma patients. Lancet. 1983;1(8336):1270.

    Article  PubMed  CAS  Google Scholar 

  4. Absalom A, Pledger D, Kong A. Adrenocortical function in critically ill patients 24 h after a single dose of etomidate. Anaesthesia. 1999;54(9):861–7.

    Article  PubMed  CAS  Google Scholar 

  5. Leslie K, Sessler DI, Schroeder M, Walters K. Propofol blood concentration and the Bispectral Index predict suppression of learning during propofol/­epidural anesthesia in volunteers. Anesth Analg. 1995;81(6):1269–74.

    PubMed  CAS  Google Scholar 

  6. Davis MH, Coleman MR, Absalom AR, Rodd JM, Johnsrude IS, Matta BF, et al. Dissociating speech perception and comprehension at reduced levels of awareness. Proc Natl Acad Sci USA. 2007;104(41):16032–7.

    Article  PubMed  CAS  Google Scholar 

  7. Tang J, Chen L, White PF, Watcha MF, Wender RH, Naruse R, et al. Recovery profile, costs, and patient satisfaction with propofol and sevoflurane for fast-track office-based anesthesia. Anesthesiology. 1999;91(1):253–61.

    Article  PubMed  CAS  Google Scholar 

  8. Raeder J, Gupta A, Pedersen FM. Recovery characteristics of sevoflurane- or propofol-based anaesthesia for day-care surgery. Acta Anaesthesiol Scand. 1997;41(8):988–94.

    Article  PubMed  CAS  Google Scholar 

  9. Borgeat A, Wilder-Smith OH, Saiah M, Rifat K. Subhypnotic doses of propofol possess direct antiemetic properties. Anesth Analg. 1992;74(4):539–41.

    Article  PubMed  CAS  Google Scholar 

  10. Heinke W, Fiebach CJ, Schwarzbauer C, Meyer M, Olthoff D, Alter K. Sequential effects of propofol on functional brain activation induced by auditory language processing: an event-related functional magnetic resonance imaging study. Br J Anaesth. 2004;92(5):641–50.

    Article  PubMed  CAS  Google Scholar 

  11. Rochette A, Hocquet AF, Dadure C, Boufroukh D, Raux O, Lubrano JF, et al. Avoiding propofol injection pain in children: a prospective, randomized, double-blinded, placebo-controlled study. Br J Anaesth. 2008;101(3):390–4.

    Article  PubMed  CAS  Google Scholar 

  12. Nieuwenhuijs DJ, Olofsen E, Romberg RR, Sarton E, Ward D, Engbers F, et al. Response surface modeling of remifentanil-propofol interaction on cardiorespiratory control and bispectral index. Anesthesiology. 2003;98(2):312–22.

    Article  PubMed  CAS  Google Scholar 

  13. Network SIG. Safe sedation of children undergoing diagnostic and therapeutic procedures. Edinburgh: SIGN; 2006.

    Google Scholar 

  14. Practice guidelines for sedation and analgesia by non-anesthesiologists. Anesthesiology 2002;96(4):1004-17.

    Google Scholar 

  15. Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98(2):428–36.

    Article  PubMed  CAS  Google Scholar 

  16. Memis D, Hekimoglu S, Vatan I, Yandim T, Yuksel M, Sut N. Effects of midazolam and dexmedetomidine on inflammatory responses and gastric intramucosal pH to sepsis, in critically ill patients. Br J Anaesth. 2007;98(4):550–2.

    Article  PubMed  CAS  Google Scholar 

  17. Taniguchi T, Kurita A, Kobayashi K, Yamamoto K, Inaba H. Dose- and time-related effects of dexmedetomidine on mortality and inflammatory responses to endotoxin-induced shock in rats. J Anesth. 2008;22(3):221–8.

    Article  PubMed  Google Scholar 

  18. Koroglu A, Teksan H, Sagir O, Yucel A, Toprak HI, Ersoy OM. A comparison of the sedative, hemodynamic, and respiratory effects of dexmedetomidine and propofol in children undergoing magnetic resonance imaging. Anesth Analg. 2006;103(1):63–7.

    Article  PubMed  CAS  Google Scholar 

  19. Mason KP, Zgleszewski SE, Dearden JL, Dumont RS, Pirich MA, Stark CD, et al. Dexmedetomidine for pediatric sedation for computed tomography imaging studies. Anesth Analg. 2006;103(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  20. Mason KP, Zgleszewski SE, Prescilla R, Fontaine PJ, Zurakowski D. Hemodynamic effects of dexmedetomidine sedation for CT imaging studies. Paediatr Anaesth. 2008;18(5):393–402.

    Article  PubMed  Google Scholar 

  21. Mason KP, Zurakowski D, Zgleszewski SE, Robson CD, Carrier M, Hickey PR, et al. High dose dexmedetomidine as the sole sedative for pediatric MRI. Paediatr Anaesth. 2008;18(5):403–11.

    Article  PubMed  Google Scholar 

  22. Upton RN, Ludbrook G. A physiologically based, recirculatory model of the kinetics and dynamics of propofol in man. Anesthesiology. 2005;103(2):344–52.

    Article  PubMed  CAS  Google Scholar 

  23. Upton RN. The two-compartment recirculatory pharmacokinetic model–an introduction to recirculatory pharmacokinetic concepts. Br J Anaesth. 2004;92(4):475–84.

    Article  PubMed  CAS  Google Scholar 

  24. Weiss M, Krejcie TC, Avram MJ. A minimal physiological model of thiopental distribution kinetics based on a multiple indicator approach. Drug Metab Dispos. 2007;35(9):1525–32.

    Article  PubMed  CAS  Google Scholar 

  25. Avram MJ, Krejcie TC. Using front-end kinetics to optimize target-controlled drug infusions. Anesthesiology. 2003;99(5):1078–86.

    Article  PubMed  Google Scholar 

  26. Krejcie TC, Avram MJ. What determines anesthetic induction dose? It’s the front-end kinetics, doctor! Anesth Analg. 1999;89(3):541–4.

    PubMed  CAS  Google Scholar 

  27. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76(3):334–41.

    Article  PubMed  CAS  Google Scholar 

  28. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41–8.

    Article  PubMed  CAS  Google Scholar 

  29. Saint-Maurice C, Cockshott ID, Douglas EJ, Richard MO, Harmey JL. Pharmacokinetics of propofol in young children after a single dose. Br J Anaesth. 1989;63:667–70.

    Article  PubMed  CAS  Google Scholar 

  30. Murat I, Billard V, Vernois J, Zaouter M, Marsol P, Souron R, et al. Pharmacokinetics of propofol after a single dose in children aged 1-3 years with minor burns. Comparison of three data analysis approaches. Anesthesiology. 1996;84(3):526–32.

    Article  PubMed  CAS  Google Scholar 

  31. Schuttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology. 2000;92(3):727–38.

    Article  PubMed  CAS  Google Scholar 

  32. Short TG, Aun CS, Tan P, Wong J, Tam YH, Oh TE. A prospective evaluation of pharmacokinetic model controlled infusion of propofol in paediatric patients. Br J Anaesth. 1994;72:302–6.

    Article  PubMed  CAS  Google Scholar 

  33. Kataria BK, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY, et al. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology. 1994;80(1):104–22.

    Article  PubMed  CAS  Google Scholar 

  34. Absalom A, Amutike D, Lal A, White M, Kenny GN. Accuracy of the ‘Paedfusor’ in children undergoing cardiac surgery or catheterization. Br J Anaesth. 2003;91(4):507–13.

    Article  PubMed  CAS  Google Scholar 

  35. Rigouzzo A, Girault L, Louvet N, Servin F, De-Smet T, Piat V, et al. The relationship between bispectral index and propofol during target-controlled infusion anesthesia: a comparative study between children and young adults. Anesth Analg. 2008;106(4):1109–16.

    Article  PubMed  CAS  Google Scholar 

  36. Potts AL, Warman GR, Anderson BJ. Dexmedetomidine disposition in children: a population analysis. Paediatr Anaesth. 2008;18(8):722–30.

    Article  PubMed  Google Scholar 

  37. Petroz GC, Sikich N, James M, van Dyk H, Shafer SL, Schily M, et al. A phase I, two-center study of the pharmacokinetics and pharmacodynamics of dexmedetomidine in children. Anesthesiology. 2006;105(6):1098–110.

    Article  PubMed  CAS  Google Scholar 

  38. Diaz SM, Rodarte A, Foley J, Capparelli EV. Pharmacokinetics of dexmedetomidine in postsurgical pediatric intensive care unit patients: preliminary study. Pediatr Crit Care Med. 2007;8(5):419–24.

    Article  PubMed  Google Scholar 

  39. Ramsay MA, Savege TM, Simpson BR, Goodwin R. Controlled sedation with alphaxalone-alphadolone. Br Med J. 1974;2(920):656–9.

    Article  PubMed  CAS  Google Scholar 

  40. Shafer SL, Gregg KM. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm. 1992;20(2):147–69.

    PubMed  CAS  Google Scholar 

  41. Kruger-Thiemer E. Continuous intravenous infusion and multicompartment accumulation. Eur J Pharmacol. 1968;4(3):317–24.

    Article  PubMed  CAS  Google Scholar 

  42. Vaughan DP, Tucker GT. General theory for rapidly establishing steady state drug concentrations using two consecutive constant rate intravenous infusions. Eur J Clin Pharmacol. 1975;9(2–3):235–8.

    Article  PubMed  CAS  Google Scholar 

  43. Vaughan DP, Tucker GT. General derivation of the ideal intravenous drug input required to achieve and maintain a constant plasma drug concentration. Theoretical application to lignocaine therapy. Eur J Clin Pharmacol. 1976;10(6):433–40.

    Article  PubMed  CAS  Google Scholar 

  44. Schwilden H. A general method for calculating the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol. 1981;20(5):379–86.

    Article  PubMed  CAS  Google Scholar 

  45. Glen JB. The development of ‘Diprifusor’: a TCI system for propofol. Anaesthesia. 1998;53 Suppl 1:13–21.

    Article  PubMed  CAS  Google Scholar 

  46. Gray JM, Kenny GN. Development of the technology for ‘Diprifusor’ TCI systems. Anaesthesia. 1998;53 Suppl 1:22–7.

    Article  PubMed  CAS  Google Scholar 

  47. Hammer GB, Litalien C, Wellis V, Drover DR. Determination of the median effective concentration (EC50) of propofol during oesophagogastroduodenoscopy in children. Paediatr Anaesth. 2001;11(5):549–53.

    Article  PubMed  CAS  Google Scholar 

  48. Drover DR, Litalien C, Wellis V, Shafer SL, Hammer GB. Determination of the pharmacodynamic interaction of propofol and remifentanil during esophagogastroduodenoscopy in children. Anesthesiology. 2004;100(6):1382–6.

    Article  PubMed  CAS  Google Scholar 

  49. Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20(1):63–94.

    PubMed  CAS  Google Scholar 

  50. Swinhoe CF, Peacock JE, Glen JB, Reilly CS. Evaluation of the predictive performance of a ‘Diprifusor’ TCI system. Anaesthesia. 1998;53 Suppl 1:61–7.

    Article  PubMed  CAS  Google Scholar 

  51. Schuttler J, Kloos S, Schwilden H, Stoeckel H. Total intravenous anaesthesia with propofol and alfentanil by computer-assisted infusion. Anaesthesia. 1988;43(Suppl):2–7.

    Article  PubMed  Google Scholar 

  52. Engelhardt T, McCheyne AJ, Morton N, Karsli C, Luginbuehl I, Adeli K, et al. Clinical adaptation of a pharmacokinetic model of Propofol plasma concentrations in children. Paediatr Anaesth. 2008;18(3):235–9.

    Article  PubMed  Google Scholar 

  53. Vuyk J. Pharmacokinetic and pharmacodynamic interactions between opioids and propofol. J Clin Anesth. 1997;9(6 Suppl):23S–6.

    Article  PubMed  CAS  Google Scholar 

  54. Vuyk J, Lim T, Engbers FH, Burm AG, Vletter AA, Bovill JG. The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in women. Anesthesiology. 1995;83(1):8–22.

    Article  PubMed  CAS  Google Scholar 

  55. Vuyk J, Mertens MJ, Olofsen E, Burm AG, Bovill JG. Propofol anesthesia and rational opioid selection: determination of optimal EC50-EC95 propofol-opioid concentrations that assure adequate anesthesia and a rapid return of consciousness. Anesthesiology. 1997;87(6):1549–62.

    Article  PubMed  CAS  Google Scholar 

  56. Bouillon T, Bruhn J, Radu-Radulescu L, Bertaccini E, Park S, Shafer S. Non-steady state analysis of the pharmacokinetic interaction between propofol and remifentanil. Anesthesiology. 2002;97(6):1350–62.

    Article  PubMed  CAS  Google Scholar 

  57. Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, et al. Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology. 2004;100(6):1353–72.

    Article  PubMed  CAS  Google Scholar 

  58. Bruhn J, Bouillon TW, Radulescu L, Hoeft A, Bertaccini E, Shafer SL. Correlation of approximate entropy, bispectral index, and spectral edge frequency 95 (SEF95) with clinical signs of “anesthetic depth” during coadministration of propofol and remifentanil. Anesthesiology. 2003;98(3):621–7.

    Article  PubMed  CAS  Google Scholar 

  59. Ropcke H, Konen-Bergmann M, Cuhls M, Bouillon T, Hoeft A. Propofol and remifentanil pharmacodynamic interaction during orthopedic surgical procedures as measured by effects on bispectral index. J Clin Anesth. 2001;13(3):198–207.

    Article  PubMed  CAS  Google Scholar 

  60. Struys MM, Vereecke H, Moerman A, Jensen EW, Verhaeghen D, De Neve N, et al. Ability of the bispectral index, autoregressive modelling with exogenous input-derived auditory evoked potentials, and predicted propofol concentrations to measure patient responsiveness during anesthesia with propofol and remifentanil. Anesthesiology. 2003;99(4):802–12.

    Article  PubMed  CAS  Google Scholar 

  61. Schnider T, Minto C. Pharmacokinetic models of propofol for TCI. Anaesthesia. 2008;63(2):206.

    Article  PubMed  CAS  Google Scholar 

  62. Minto CF, Schnider TW, Gregg KM, Henthorn TK, Shafer SL. Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology. 2003;99(2):324–33.

    Article  PubMed  Google Scholar 

  63. Irwin MG, Thompson N, Kenny GN. Patient-maintained propofol sedation. Assessment of a target-controlled infusion system. Anaesthesia. 1997;52(6):525–30.

    Article  PubMed  CAS  Google Scholar 

  64. Henderson F, Absalom AR, Kenny GN. Patient-maintained propofol sedation: a follow up safety study using a modified system in volunteers. Anaesthesia. 2002;57(4):387–90.

    Article  PubMed  CAS  Google Scholar 

  65. Stonell CA, Leslie K, Absalom AR. Effect-site targeted patient-controlled sedation with propofol: comparison with anaesthetist administration for colonoscopy. Anaesthesia. 2006;61(3):240–7.

    Article  PubMed  CAS  Google Scholar 

  66. Leitch JA, Anderson K, Gambhir S, Millar K, Robb ND, McHugh S, et al. A partially blinded randomised controlled trial of patient-maintained propofol sedation and operator controlled midazolam sedation in third molar extractions. Anaesthesia. 2004;59(9):853–60.

    Article  PubMed  CAS  Google Scholar 

  67. Anderson KJ, Leitch JA, Green JS, Kenny GN. Effect-site controlled patient maintained propofol sedation: a volunteer safety study. Anaesthesia. 2005;60(3):235–8.

    Article  PubMed  CAS  Google Scholar 

  68. Kenny GN, Mantzaridis H. Closed-loop control of propofol anaesthesia. Br J Anaesth. 1999;83(2):223–8.

    Article  PubMed  CAS  Google Scholar 

  69. Mortier E, Struys M, De Smet T, Versichelen L, Rolly G. Closed-loop controlled administration of propofol using bispectral analysis. Anaesthesia. 1998;53(8):749–54.

    Article  PubMed  CAS  Google Scholar 

  70. Struys MM, De Smet T, Versichelen LF, Van DV, Van den BR, Mortier EP. Comparison of closed-loop controlled administration of propofol using Bispectral Index as the controlled variable versus “standard practice” controlled administration. Anesthesiology. 2001;95(1):6–17.

    Article  PubMed  CAS  Google Scholar 

  71. Leslie K, Absalom A, Kenny GN. Closed loop control of sedation for colonoscopy using the Bispectral Index. Anaesthesia. 2002;57(7):693–7.

    Article  PubMed  CAS  Google Scholar 

  72. Absalom AR, Sutcliffe N, Kenny GN. Closed-loop control of anesthesia using Bispectral index: performance assessment in patients undergoing major orthopedic surgery under combined general and regional anesthesia. Anesthesiology. 2002;96(1):67–73.

    Article  PubMed  Google Scholar 

  73. Absalom AR, Kenny GN. Closed-loop control of propofol anaesthesia using bispectral index: performance assessment in patients receiving computer-controlled propofol and manually controlled remifentanil infusions for minor surgery. Br J Anaesth. 2003;90(6):737–41.

    Article  PubMed  CAS  Google Scholar 

  74. Struys MM, De Smet T, Greenwald S, Absalom AR, Binge S, Mortier EP. Performance evaluation of two published closed-loop control systems using bispectral index monitoring: a simulation study. Anesthesiology. 2004;100(3):640–7.

    Article  PubMed  Google Scholar 

  75. De Smet T, Struys MM, Neckebroek MM, Van den Hauwe K, Bonte S, Mortier EP. The accuracy and clinical feasibility of a new bayesian-based closed-loop control system for propofol administration using the bispectral index as a controlled variable. Anesth Analg. 2008;107(4):1200–10.

    Article  PubMed  Google Scholar 

  76. Manberg PJ, Vozella CM, Kelley SD. Regulatory challenges facing closed-loop anesthetic drug infusion devices. Clin Pharmacol Ther. 2008;84(1):166–9.

    Article  PubMed  CAS  Google Scholar 

  77. Absalom A, Struys MMRF. An overview of TCI and TIVA. Gent: Academia; 2005. p. 13.

    Google Scholar 

  78. Absalom A, Kenny G. ‘Paedfusor’ pharmacokinetic data set. Br J Anaesth. 2005;95(1):110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Absalom MBChB, FRCA, MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Absalom, A.R. (2012). Intravenous Infusions for Sedation: Rationale, State of the Art, and Future Trends. In: Mason, K. (eds) Pediatric Sedation Outside of the Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09714-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09714-5_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-09713-8

  • Online ISBN: 978-0-387-09714-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics