Skip to main content

Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases

  • Chapter
  • First Online:
Activity-Based Protein Profiling

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 420))

Abstract

Non-ribosomal peptide (NRP) natural products are one of the most promising resources for drug discovery and development because of their wide-ranging of therapeutic potential, and their behavior as virulence factors and signaling molecules. The NRPs are biosynthesized independently of the ribosome by enzyme assembly lines known as the non-ribosomal peptide synthetase (NRPS) machinery. Genetic, biochemical, and bioinformatics analyses have provided a detailed understanding of the mechanism of NRPS catalysis. However, proteomic techniques for natural product biosynthesis remain a developing field. New strategies are needed to investigate the proteomes of diverse producer organisms and directly analyze the endogenous NRPS machinery. Advanced platforms should verify protein expression, protein folding, and activities and also enable the profiling of the NRPS machinery in biological samples from wild-type, heterologous, and engineered bacterial systems. Here, we focus on activity-based protein profiling strategies that have been recently developed for studies aimed at visualizing and monitoring the NRPS machinery and also for rapid labeling, identification, and biochemical analysis of NRPS enzyme family members as required for proteomic chemistry in natural product sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ames BD, Walsh CT (2010) Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry 49:3351–3365

    CAS  PubMed  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    CAS  PubMed  Google Scholar 

  • Baltz RH (2014) Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol 3:748–758

    CAS  PubMed  Google Scholar 

  • Barajas JF, Finzel K, Valentic TR et al (2016) Structural and biochemical analysis of protein–protein interactions between the acyl-carrier protein and product template domain. Angew Chem Int Ed 55:13005–13009

    CAS  Google Scholar 

  • Barry SM, Challis GL (2009) Recent advances in siderophore biosynthesis. Curr Opin Chem Biol 13:205–215

    CAS  PubMed  Google Scholar 

  • Beld J, Sonnenschein EC, Vickery CR et al (2014) The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 31:61–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blatti JL, Beld J, Behnke CA et al (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoS ONE 7:e42949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bode HB, Müller R (2005) The impact of bacterial genomics on natural product research. Angew Chem Int Ed 44:6828–6846

    CAS  Google Scholar 

  • Bozhüyük KAJ, Fleischhacker F, Linck A et al (2018) De novo design and engineering of non-ribosomal peptide synthetases. Nat Chem. https://doi.org/10.1038/NCHEM.2890

    Article  PubMed  Google Scholar 

  • Brieke C, Yim G, Peschke M et al (2016) Catalytic promiscuity of glycopeptide N-methyltransferases enables bio-orthogonal labelling of biosynthetic intermediates. Chem Commun 52:13679–13682

    CAS  Google Scholar 

  • Bumpus SB, Kelleher NL (2008) Accessing natural product biosynthetic processes by mass spectrometry. Curr Opin Chem Biol 12:475–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bumpus SB, Evans BS, Thomas PM et al (2009) A proteomics approach to discovering natural products and their biosynthetic pathways. Nat Biotechnol 27:951–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calcott MJ, Owen JG, Lamont IL et al (2014) Biosynthesis of novel pyoverdines by domain substitution in a nonribosomal peptide synthetase of Pseudomonas aeruginosa. Appl Environ Microbiol 80:5723–5731

    PubMed  PubMed Central  Google Scholar 

  • Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224

    CAS  PubMed  Google Scholar 

  • Chalut C, Botella L, Sousa-D’Auris C et al (2006) The nonredundant roles of two 4’-phosphopantetheinyl transferases in vital processes of Mycobacteria. Proc Natl Acad Sci U S A 103:8511–8516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WH, Li K, Sandhya N et al (2016) Interdomain and intermodule organization in epimerization domain containing nonribosomal peptide synthetases. ACS Chem Biol 11:2293–2303

    CAS  PubMed  Google Scholar 

  • Chuh KN, Batt AR, Pratt MR (2016) Chemical methods for encoding and decoding of posttranslational modifications. Cell Chem Biol 23:86–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cisar JS, Tan DS (2008) Small molecule inhibition of microbial natural product biosynthesis—an emerging antibiotic strategy. Chem SocRev 37:1320–1329

    CAS  Google Scholar 

  • Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548

    CAS  PubMed  Google Scholar 

  • Conti E, Stachelhaus T, Marahiel MA et al (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16: 4174–4183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosmina P, Rodriguez F, de Ferra F et al (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:821–831

    CAS  PubMed  Google Scholar 

  • Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414

    CAS  PubMed  Google Scholar 

  • Crosby J, Crump MP (2012) The structural role of the carrier protein—active controller or passive carrier. Nat Prod Rep 29:1111–1137

    CAS  PubMed  Google Scholar 

  • De Voss JJ, Rutter K, Schroeder BG et al (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97:1252–1257

    PubMed  PubMed Central  Google Scholar 

  • Dormán G, Nakamura H, Pulsipher A et al (2016) The life of Pi star: exploring the exciting and forbidden worlds of the benzophenone photophore. Chem Rev 116:15284–15398

    PubMed  Google Scholar 

  • Dorrestein PC, Blackhall J, Straight PD et al (2006a) Activity screening of carrier domains within nonribosomal peptide synthetases using complex substrate mixtures and large molecule mass spectrometry. Biochemistry 45:1537–1546

    CAS  PubMed  Google Scholar 

  • Dorrestein PC, Bumpus SB, Calderone CT et al (2006b) Facile detection of acyl and peptidyl intermediates on thiotemplate carrier domains via phosphopantetheinyl elimination reactions during tandem mass spectrometry. Biochemistry 45:12756–12766

    CAS  PubMed  Google Scholar 

  • Duckworth BP, Wilson DJ, Nelson KM et al (2012) Development of a selective activity-based probe for adenylating enzymes: profiling MbtA involved in siderophore biosynthesis from mycobacterium tuberculosis. ACS Chem Biol 7:1653–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans BS, Chen Y, Metcalf WW et al (2011) Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chem Biol 18:601–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreras JA, Ryu JS, Di Lello F et al (2005) Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia petis. Nat Chem Biol 1:29–32

    CAS  PubMed  Google Scholar 

  • Finking R, Neumüller A, Solsbacher J et al (2003) Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. ChemBioChem 4:903–906

    CAS  PubMed  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    CAS  PubMed  Google Scholar 

  • Foley TL, Young BS, Burkart MD (2009) Phosphopantetheinyl transferase inhibition and secondary metabolism. FEBS J 276:7134–7145

    CAS  PubMed  Google Scholar 

  • Foley TL, Rai G, Yasgar A et al (2014) 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl) piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth. J Med Chem 57:1063–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring AM, Mori I, Walsh CT (1998) Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37:2648–2659

    CAS  PubMed  Google Scholar 

  • Gulick AM (2016) Structural insights into the necessary conformational changes of modular nonribosomal peptide synthetases. Curr Opin Chem Biol 35:89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hornbogen T, Riechers SP, Prinz B et al (2007) Functional characterization of the recombinant N-methyltransferase domain from the multienzyme enniatin synthetase. ChemBioChem 8:1048–1054

    CAS  PubMed  Google Scholar 

  • Hoyer KM, Mahlert C, Marahiel MA (2007) The iterative gramicidin S thioesterase catalyzes peptide ligation and cyclization. Chem Biol 14:13–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang T, Wang Y, Yin J et al (2011) Identification and characterization of the pyridomycin biosynthetic gene cluster of Streptomyces pyridomyceticus NRRL B-2517. J Biol Chem 286:20648–20657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hur GH, Vickery CR, Burkart MD (2012) Exploration of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 10:1074–1098

    Google Scholar 

  • Isono K, Uramoto M, Kusakabe H et al (1984) Ascamycin and dealanylascamycin, nucleoside antibiotics from Streptomyces sp. J Antibiot 37:670–672

    CAS  Google Scholar 

  • Ishikawa F, Haushalter RW, John Lee D et al (2013) Sulfonyl 3-alkynyl pantetheinamides as mechanism-based cross-linkers of acyl carrier protein dehydratase. J Am Chem Soc 135:8846–8849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa F, Kakeya H (2014) Specific enrichment of nonribosomal peptide synthetase module by an affinity probe for adenylation domains. Bioorg Med Chem Lett 24:865–869

    CAS  PubMed  Google Scholar 

  • Ishikawa F, Miyamoto K, Konno S et al (2015a) Accurate detection of adenylation domain functions in nonribosomal peptide synthetases by an enzyme-linked immunosorbent assay system using active site-directed probes for adenylation domains. ACS Chem Biol 10:2816–2826

    CAS  PubMed  Google Scholar 

  • Ishikawa F, Konno S, Suzuki T et al (2015b) Profiling nonribosomal peptide synthetase activities using chemical proteomic probes for adenylation domains. ACS Chem Biol 10:1989–1997

    CAS  PubMed  Google Scholar 

  • Ishikawa F, Suzuki T, Dohmae N et al (2015c) A multiple-labeling strategy for nonribosomal peptide synthetases using active-site-directed proteomic probes for adenylation domains. ChemBioChem 16:2590–2594

    CAS  PubMed  Google Scholar 

  • Ishikawa F, Sugimoto H, Kakeya H (2016) In vitro investigation of crosstalk between fatty Acid and polyketide synthases in the andrimid biosynthetic assembly line. ChemBioChem 17:2137–2142

    CAS  PubMed  Google Scholar 

  • Ishikawa F, Kasai S, Kakeya H et al (2017) Visualizing the adenylation activities and protein–protein interactions of aryl acid adenylating enzymes. ChemBioChem 18:2199–2204

    CAS  PubMed  Google Scholar 

  • Jaremko MJ, John Lee D, Patel A et al (2017) Manipulating protein–protein interactions in nonribosomal peptide synthetase type II peptidyl carrier proteins. Biochemistry 56:5269–5273

    CAS  PubMed  Google Scholar 

  • Jenni S, Leibundgut M, Maier T et al (2006) Architecture of a fungal fatty acid synthase at 5 Å resolution. Science 311:1263–1268

    CAS  PubMed  Google Scholar 

  • Kasai S, Konno S, Ishikawa F et al (2015) Functional profiling of adenylation domains in nonribosomal peptide synthetases by competitive activity-based protein profiling. Chem Commum 51:15764–15767

    CAS  Google Scholar 

  • Kasai S, Ishikawa F, Suzuki T et al (2016) A chemical proteomic probe for detecting native carrier protein motifs in nonribosomal peptide synthetases. Chem Commum 52:14129–14132

    CAS  Google Scholar 

  • Keating TA, Gary Marshall C, Walsh CT (2000) Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH. Biochemistry 39:15522–15530

    CAS  PubMed  Google Scholar 

  • Keating TA, Ehmann DE, Kohli RM et al (2001) Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis. ChemBioChem 2:99–107

    CAS  PubMed  Google Scholar 

  • Kohli RM, Walsh CT, Burkart MD (2002) Biomimetic synthesis and optimization of cyclic peptide sntibiotics. Nature 418:658–661

    CAS  PubMed  Google Scholar 

  • Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137

    CAS  PubMed  Google Scholar 

  • Konno S, Ishikawa F, Suzuki T et al (2015) Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Chem Commum 51:2262–2265

    CAS  Google Scholar 

  • Konno S, Ishikawa F, Suzuki T et al (2017) A chemoproteomics approach to investigate phosphopantetheine transferase activity at the cellular level. ChemBioChem 18:1855–1862

    CAS  PubMed  Google Scholar 

  • Krätzschmar J, Krause M, Marahiel MA (1989) Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 171:5422–5429

    PubMed  PubMed Central  Google Scholar 

  • Kries H, Wachtel R, Pabst A et al (2014) Reprogramming nonribosomal peptide synthetases for “clickable” amino acids. Angew Chem Int Ed 53:10105–10108

    CAS  Google Scholar 

  • Kries H, Niquille DL, Hilvert D (2015) A subdomain swap strategy for reengineering nonribosomal peptides. Chem Biol 22:640–648

    CAS  PubMed  Google Scholar 

  • Kries H (2016) Biosynthetic engineering of nonribosomal peptide synthetases. J Pept Sci 9:564–570

    Google Scholar 

  • Lamb AL (2015) Breaking a pathogen’s iron will: inhibiting siderophore production as an antimicrobial strategy. Biochim Biophys Acta 1854:1054–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambalot RH, Walsh CT (1995) Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J Biol Chem 270:24658–24661

    CAS  PubMed  Google Scholar 

  • Lambalot RH, Gehring AM, Flugel RS et al (1996) A new enzyme superfamily—the phosphopantetheinyl transferases. Chem Biol 3:923–936

    CAS  PubMed  Google Scholar 

  • Lee JY, Janes BK, Passalacqua KD et al (2007) Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J Bacteriol 189:1698–1710

    CAS  PubMed  Google Scholar 

  • Liu Y, Bruner SD (2007) Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases. ChemBioChem 8:617–621

    CAS  PubMed  Google Scholar 

  • Maier T, Jenni S, Ban N (2006) Architecture of mammalian fatty acid synthase at 4.5 Å resolution. Science 311:1258–1263

    CAS  PubMed  Google Scholar 

  • Marshall CG, Burkart MD, Keating TA et al (2001) Heterocycle formation in vibriobactin biosynthesis: alternative substrate utilization and identification of a condensed intermediate. Biochemistry 40:10655–10663

    CAS  PubMed  Google Scholar 

  • McQuade TJ, Shallop AD, Sheoran A et al (2009) A nonradioactive high-throughput assay for screening and characterization of adenylation domains for nonribosomal peptide combinatorial biosynthesis. Anal Biochem 386:244–250

    CAS  PubMed  Google Scholar 

  • Meier JL, Niessen S, Hoover HS et al (2009) An orthogonal active site identification system (OASIS) for proteomic profiling of natural product biosynthesis. ACS Chem Biol 11:948–957

    Google Scholar 

  • Meier JL, Burkart MD (2010) Proteomic analysis of polyketide and nonribosomal peptide biosynthesis. Curr Opin Chem Biol 15:1–9

    Google Scholar 

  • Meluzzi D, Zheng WH, Hensler M et al (2008) Top-down mass spectrometry on low-resolution instruments: characterization of phosphopantetheinylated carrier domains in polyketide and non-ribosomal biosynthetic pathways. Bioorg Med Chem Lett 18:3107–3111

    CAS  PubMed  Google Scholar 

  • Mercer AC, Burkart MD (2007) The ubiquitous carrier protein—a window to metabolite biosynthesis. Nat Prod Rep 24:750–773

    CAS  PubMed  Google Scholar 

  • Miethke M, Bisseret P, Beckering CL et al (2006) Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis. FEBS J 273:409–419

    CAS  PubMed  Google Scholar 

  • Mihara K, Tanabe T, Yamakawa Y et al (2004) Identification and transcriptional organization of a gene cluster involved in biosynthesis and transport of acinetobactin, a siderophore produced by Acinetobacter baumannii ATCC 19606T. Microbiology 150:2587–2597

    CAS  PubMed  Google Scholar 

  • Miller DA, Luo L, Hillson N et al (2002) Yersiniabactin synthetase: a four-protein assembly line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis. Chem Biol 9:333–344

    CAS  PubMed  Google Scholar 

  • Mitchell CA, Shi C, Aldrich CC et al (2012) Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Biochemistry 51:3252–3263

    CAS  PubMed  Google Scholar 

  • Mootz HD, Schwarzer D, Marahiel MA (2002) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. ChemBioChem 3:490–504

    CAS  PubMed  Google Scholar 

  • Moran S, Rai DK, Clark BR et al (2009) Precursor-directed biosynthesis of fluorinated iturin A in Bacillus spp. Org Biomol Chem 7:644–646

    CAS  PubMed  Google Scholar 

  • Neres J, Labello NP, Somu RV et al (2008) Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: Structure–activity relationships of the nucleobase domain of 5′-O-[N-(salicyl)sulfamoyl]adenosine. J Med Chem 51:5349–5370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen C, Haushalter RW, John Lee D et al (2014) Trapping the dynamic acyl carrier protein in fatty acid biosynthesis. Nature 505:427–431

    CAS  PubMed  Google Scholar 

  • Niquille DL, Hansen DA, Mori T et al (2018) Nonribosomal biosynthesis of backbone-modified peptides. Nat Chem 10:282–287. https://doi.org/10.1038/NCHEM.2891

    Article  PubMed  Google Scholar 

  • Otten LG, Schaffer ML, Villiers BRM et al (2007) An optimized ATP/PPi-exchange assay in 96-well format for screening of adenylation domains for applications in combinatorial biosynthesis. Biotechnol J 2:232–240

    CAS  PubMed  Google Scholar 

  • Parris KD, Lin L, Tam A et al (2000) Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites. Structure 8:883–895

    CAS  PubMed  Google Scholar 

  • Paul VJ, Arthur KE, Ritson-Williams R et al (2007) Marine biological laboratory chemical defenses: from compounds to communities. Biol Bull 213:226–251

    CAS  PubMed  Google Scholar 

  • Phelan VV, Du Y, McLean JA et al (2009) Adenylation enzyme characterization using γ-18O4-ATP pyrophosphate exchange. Chem Biol 16:473–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Płoskoń E, Arthur CJ, Kanari ALP et al (2010) Recognition of intermediate functionality by acyl carrier protein over a complete cycle of fatty acid biosynthesis. Chem Biol 17:776–785

    PubMed  Google Scholar 

  • Qiao C, Wilson DJ, Bennett EM et al (2007) A mechanism-based aryl carrier protein/thiolation domain affinity probe. J Am Chem Soc 129:6350–6351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quadri LEN, Sello J, Keating TA et al (1998a) Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5:631–645

    CAS  PubMed  Google Scholar 

  • Quadri LEN, Weinreb PH, Lei M et al (1998b) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carder protein domains in peptide synthetases. Biochemistry 37:1585–1595

    CAS  PubMed  Google Scholar 

  • Quadri LEN (2007) Strategic paradigm shifts in the antimicrobial drug discovery process of the 21st century. Infect Disord Drug Targets 7:230–237

    CAS  PubMed  Google Scholar 

  • Reyes CP, La Clair JJ, Burkart MD (2010) Metabolic probes for imaging endosymbiotic bacteria within toxic dinoflagellates. Chem Commum 46:8151–8153

    CAS  Google Scholar 

  • Röttig M, Medema MH, Blin K et al (2011) NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39(suppl 2):W362–W367

    PubMed  PubMed Central  Google Scholar 

  • Rusnak F, Stephen Faraci W, Walsh CT (1989) Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase: demonstration of enzyme-bound (2,3-dihydroxybenzoyl)adenylate product. Biochemistry 28:6827–6835

    CAS  PubMed  Google Scholar 

  • Saario SM, McKinney MK, Speers AE et al (2012) Clickable, photoreactive inhibitors to probe the active site microenvironment of fatty acid amide hydrolase. Chem Sci 3:77–83

    CAS  PubMed  Google Scholar 

  • Samel SA, Czodrowski P, Essen LO (2014) Structure of the epimerization domain of tyrocidine synthetase A. Acta Cryst D70:1442–1452

    Google Scholar 

  • Sanman LE, Bogyo M (2014) Activity-based profiling of proteases. Annu Rev Biochem 83:249–273

    CAS  PubMed  Google Scholar 

  • Schley C, Altmeyer MO, Swart R et al (2006) Proteome analysis of Myxococcus xanthus by off-line two-dimensional chromatographic separation using monolithic poly-(styrene-divinylbenzene) columns combined with ion-trap tandem mass spectrometry. J Proteome Res 5:2760–2768

    CAS  PubMed  Google Scholar 

  • Schneider TL, Shen B, Walsh CT (2003) Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 42:9722–9730

    CAS  PubMed  Google Scholar 

  • Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949

    PubMed  PubMed Central  Google Scholar 

  • Somu RV, Boshoff H, Qiao C et al (2006) Rationally-designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J Med Chem 49:31–34

    CAS  PubMed  Google Scholar 

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    CAS  PubMed  Google Scholar 

  • Stachelhaus T, Walsh CT (2000) Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry 39:5775–5787

    CAS  PubMed  Google Scholar 

  • Sundlov JA, Shi C, Wilson DJ et al (2012) Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Chem Biol 19:188–198

    CAS  Google Scholar 

  • Tallorin L, Finzel K, Nguyen QG et al (2016) Trapping of the enoyl-acyl carrier protein reductase–acyl carrier protein interaction. J Am Chem Soc 138:3962–3965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thirlway J, Lewis R, Nunns L et al (2012) Introduction of a non-natural amino acid into a nonribosomal peptide antibiotics by modification of adenylation domain specificity. Angew Chem Int Ed 51:7181–7184

    CAS  Google Scholar 

  • Tim J, Post FA, Bekker LG et al (2003) Differential expression of iron-, carbon-, and oxygen- responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci U S A 100:14321–14326

    Google Scholar 

  • Ueda H, Shoku Y, Hayashi N et al (1991) X-ray crystallographic conformational study of 5′-O-[N-(L-alanyl)-sulfamoyl]adenosine, a substrate analogue for alanyl-tRNA synthetase. Biochim Biophys Acta 1080:126–134

    CAS  PubMed  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    CAS  PubMed  Google Scholar 

  • Wakimoto T, Egami Y, Nakashima Y et al (2014) Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nat Chem Biol 10:648–655

    CAS  PubMed  Google Scholar 

  • Walsh C, Liu J, Rusnak F et al (1990) Molecular studies on enzyme in chorismate metabolism and the enterobactin biosynthetic pathway. Chem Rev 90:1105–1129

    CAS  Google Scholar 

  • Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303:1805–1810

    CAS  PubMed  Google Scholar 

  • Walsh CT, O’Brien RV, Khosla C (2013) Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed 52:7098–7124

    CAS  Google Scholar 

  • Walsh CT (2016) Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat Prod Rep 33:127–135

    CAS  PubMed  Google Scholar 

  • Wang M, Beissner M, Zhao H (2014) Aryl-aldehyde formation in fungal polyketides: discovery and characterization of a distinct biosynthetic mechanism. Chem Biol 21:257–263

    PubMed  PubMed Central  Google Scholar 

  • Whicher JR, Dutta S, Hansen DA et al (2014) Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510:560–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DJ, Aldrich CC (2010) A continuous kinetic assay for adenylation enzyme activity and inhibition. Anal Biochem 404:56–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winn M, Fyans JK, Zhuo Y et al (2016) Recent advances in engineering nonribosomal peptide assembly lines. Nat Prod Rep 33:317–347

    CAS  PubMed  Google Scholar 

  • Worthington AS, Rivera H, Torpey JW et al (2006) Mechanism-based protein cross-linking probes to investigate carrier protein-mediated biosynthesis. ACS Chem Biol 1:687–691

    CAS  PubMed  Google Scholar 

  • Worthington AS, Burkart MD (2006) One-pot chemo-enzymatic synthesis of reporter-modified proteins. Org Biomol Chem 4:44–46

    CAS  PubMed  Google Scholar 

  • Zhang B, Tian W, Wang S et al (2017) Activation of natural products biosynthetic pathways via a protein modification level regulation. ACS Chem Biol 12:1732–1736

    CAS  PubMed  Google Scholar 

  • Zhang H, Wang, Y. Pfeifer BA (2008) Bacterial hosts for natural product production. Mol Pharmaceutics 5:212–225

    CAS  PubMed  Google Scholar 

  • Zhang K, Nelson KM, Bhuripanyo K et al (2013) Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display. Chem Biol 20:92–101

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in Aid for Scientific Research on Innovative Areas [17H05438 (F.I.) and 17H06401 (H.K.)] and the Antiaging Project for Private Universities.

Conflict of Interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fumihiro Ishikawa or Hideaki Kakeya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishikawa, F., Tanabe, G., Kakeya, H. (2018). Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases. In: Cravatt, B., Hsu, KL., Weerapana, E. (eds) Activity-Based Protein Profiling. Current Topics in Microbiology and Immunology, vol 420. Springer, Cham. https://doi.org/10.1007/82_2018_133

Download citation

Publish with us

Policies and ethics