Skip to main content

The Cucumber Genome

  • Chapter
  • First Online:
Genetics and Genomics of Cucurbitaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 20))

Abstract

Cucumber, Cucumis sativus L. (2n = 2x = 14) is both an economically and biologically important vegetable crop which has been used as a model to study sex expression in plant for a long time. While the genetic and genomics resources in cucumber are limited as compared with field crops, recent advances in technology and instrumentation for sequencing of plant genomes are providing exciting opportunities to expedite cucumber genome research. Among major horticultural crops, cucumber was the first to have a publicly released draft genome. Cucumber has some advantages for genome research due to its relatively small genome size (~367 Mbp), low percentage of repetitive DNA and short life cycle. Since the release of the cucumber genome sequence, significant progress has been made in our understanding of the cucumber genome. In this chapter, I will review recent progress in cucumber draft genome assembly, genetic map development, whole genome features of characterized gene families, and the genome dynamics from evolutionary, domestication and population perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD. Origins and recombination of the bacterial-sized multi-chromosomal mitochondrial genome of cucumber. Plant Cell. 2011;23:2499–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumuganathan K, Earle E. Nuclear DNA content of some important plant species. Plant Mol Biol Rep. 1991;9:208.

    Article  CAS  Google Scholar 

  • Baloglu MC, Eldem V, Hajyzadeh M, Unver T. Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS One. 2014;9:e96014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhaduri PN, Bose PC. Cytogenetic investigations in some common cucurbits, with special reference to fragmentation of chromosomes as physical basis of speciation. J Genet. 1947;48:237–56.

    Article  CAS  PubMed  Google Scholar 

  • Bo KL, Ma Z, Chen JF, Weng Y. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet. 2015;128:25–39.

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, et al. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics. 2010;11:569.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen JF, Staub JE, Adelberg JW, Jiang J. Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Can J Bot. 1999;77:389–93.

    CAS  Google Scholar 

  • Chung SM, Gordon VS, Staub JE. Sequencing cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling-tolerant and -susceptible cucumber lines. Genome. 2007;50:215–25.

    Article  CAS  PubMed  Google Scholar 

  • Clark AM, Jacobsen KR, Bostwick DE, Dannenhoffer JM, Skaggs MI, Thompson GA. Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein 1 (PP1), from Cucurbita maxima. Plant J. 1997;12:49–61.

    Article  CAS  PubMed  Google Scholar 

  • Eschrich W, Evert RF, Heyser W. Proteins of the sieve tube exudate of Cucurbita maxima. Planta. 1971;100:208–21.

    Article  CAS  PubMed  Google Scholar 

  • Fu R, Liu W, Li Q, Li J, Wang L, Ren Z. Comprehensive analysis of the homeodomain-leucine zipper IV transcription factor family in Cucumis sativus. Genome. 2013;56:395–405.

    Article  CAS  PubMed  Google Scholar 

  • Ganal M, Hemleben V. Insertion and amplification of a DNA sequence in satellite DNA of Cucumis sativus L. Theor Appl Genet. 1988;75:357–61.

    Article  CAS  Google Scholar 

  • Ganal M, Riede I, Hemleben V. Organization and sequence analysis of two related satellite DNAs in cucumber (Cucumis sativus L.). J Mol Evol. 1986;23:23–30.

    Article  CAS  Google Scholar 

  • Han YH, Zhang ZH, Liu JH, Lu JY, Huang SW, Jin WW. Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenet Genome Res. 2008;122:80–8.

    Article  CAS  PubMed  Google Scholar 

  • Han YH, Zhang T, Thammapichai P, Weng Y, Jiang J. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics. 2015;200:771–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Havey MJ, McCreight JD, Rhodes B, Taurick G. Differential transmission of the Cucumis organellar genomes. Theor Appl Genet. 1998;97:122–8.

    Article  CAS  Google Scholar 

  • He XM, Li YH, Pandey S, Yandell BS, Pathak M, Weng Y. QTL mapping of powdery mildew resistance in WI 2757 cucumber. Theor Appl Genet. 2013;126:2149–61.

    Article  CAS  PubMed  Google Scholar 

  • Hoshi Y, Plader W, Malepszy S. New C-banding pattern for chromosome identification in cucumber (Cucumis sativus L.). Plant Breed. 1998;117:77–82.

    Article  Google Scholar 

  • Hu LF, Liu SQ. Genome-wide analysis of the MADS-box gene family in cucumber. Genome. 2012;55:245–56.

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41:1275–81.

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, et al. Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep. 2006;25:334–40.

    Article  CAS  PubMed  Google Scholar 

  • Koo DH, Hur Y, Jin DC, Bang JW. Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol Cells. 2002;13:413–8.

    CAS  PubMed  Google Scholar 

  • Koo DH, Choi HW, Cho J, Hur Y, Bang JW. A high-resolution karyotype of cucumber (Cucumis sativus L. ‘Winter Long’) revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome. 2005;48:534–40.

    Article  CAS  PubMed  Google Scholar 

  • Koo DH, Nam YW, Choi D, Bang JW, de Jong H, Hur Y. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res. 2010;18:325–36.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang Z, Yan P, Huang S, Fei Z, Lin K. RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics. 2011a;12:540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Yang LM, Pathak M, Li DW, He XM, Weng Y. Fine genetic mapping of cp, a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet. 2011b;123:973–83.

    Article  PubMed  Google Scholar 

  • Li DW, Cuevas H, Yang LM, Li YH, Garcia-Mas J, Zalapa J, et al. Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics. 2011c;12:396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Zhang C, Li J, Wang L, Ren Z. Genome-wide identification and characterization of R2R3MYB family in Cucumis sativus. PLoS One. 2012;7:e47576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lilly J, Havey M. Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics. 2001;159:317–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X. Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics. 2011;12:471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Fu R, Li Q, Li J, Wang L, Ren Z. Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus. Gene. 2013;531:279–87.

    Article  CAS  PubMed  Google Scholar 

  • Lou Q, Zhang Y, He Y, Li J, Jia L, Cheng C, et al. Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. Plant J. 2014;78:169–79.

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Qi JJ, Shi QX, Shen D, Zhang SP, Shao GJ, et al. Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS One. 2012;7:e46919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao H, Zhang SP, Wang XW, Zhang ZH, Li M, et al. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica. 2012;172:167–76.

    Google Scholar 

  • Plader W, Yukawa Y, Sugiura M, Malepszy S. The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: its composition and comparative analysis. Cell Mol Biol Lett. 2007;12:584–94.

    Article  CAS  PubMed  Google Scholar 

  • Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45:1510–5.

    Article  CAS  PubMed  Google Scholar 

  • Qu SP, Pan YP, Weng Y. QTL Mapping of flowering time and fruit shape in Xishuangbana cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). In: Proceedings of the Cucurbitaceae 2014; October 12–16, Bay Harbor, Alexandria, American Society of Horticultural Sciences; 2014. p. 54–6.

    Google Scholar 

  • Ramachandran C, Seshadri VS. Cytological analysis of the genome of cucumber (Cucumis sativus L.) and muskmelon (Cucumis melo L.). Z Pflanzenzüchtg. 1986;96:25–38.

    Google Scholar 

  • Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, et al. An integrated genetic and cytogenetic map of the cucumber genome. PLoS One. 2009;4:e5795.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubinstein M, Katzenellenbogen M, Eshed R, Rozen A, Katzir N, Colle M, et al. A ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One. 2015;10:e0124101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schouten HJ, Krauskopf J, Visser RGF, Bai Y. Identification of candidate genes required for susceptibility to powdery or downy mildew in cucumber. Euphytica. 2014;200:475–86.

    Article  CAS  Google Scholar 

  • Sebastian P, Schaefer H, Telford IR, Renner SS. Phylogenetic relationships among domesticated and wild species of Cucumis (Cucurbitaceae): the sister species of melon is from Australia. Proc Natl Acad Sci U S A. 2010;107:14269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang QM, Li L, Dong CJ. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta. 2012;236:1093–105.

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Zhao J, Bartoszewski G, Malepszy S, Havey MJ, Chen JF. Persistence and protection of mitochondrial DNA in the generative cell of cucumber is consistent with its paternal transmission. Plant Cell Physiol. 2015;56:2271–82.

    Article  CAS  PubMed  Google Scholar 

  • Trivedi RN, Roy RP. Cytological studies in Cucumis and Citrullus. Cytologia. 1970;35:561–9.

    Article  Google Scholar 

  • Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics. 2013;14:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, VandenLangenberg K, Wehner TC, Weng Y. QTLs for Downy mildew resistance and their association with LRR-RLK resistance gene analogs in cucumber. In: Proceedings of the Cucurbitaceae 2014; October 12–16, Bay Harbor, Alexandria, American Society of Horticultural Sciences; 2014. p. 17–20.

    Google Scholar 

  • Wang J, Pan C, Wang Y, Ye L, Wu J, Chen L, et al. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genomics. 2015;16:386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward B, Anderson R, Bendich A. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell. 1981;25:793–803.

    Article  CAS  PubMed  Google Scholar 

  • Wei QZ, Wang YZ, Qin XD, Zhang YX, Zhang ZT, Wang J, et al. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics. 2014;15:1158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen CL, Cheng Q, Zhao LQ, Mao A, Yang JJ, Yu SC, et al. Identification and characterisation of Dof transcription factors in the cucumber genome. Sci Rep. 2016;6:23072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng Y, Sun ZY. Major cucurbit crops. In: Wang YH, Behera TK, editors. Genetics, genomics and breeding in crop plants Cucurbits. Enfield: Science Publishers Inc; 2011. p. 1–16.

    Google Scholar 

  • Weng Y, Johnson S, Staub JE, Huang SW. An extended microsatellite genetic map of cucumber, Cucumis sativus L. HortSci. 2010;45:880–6.

    Google Scholar 

  • Wóycicki R, Witkowicz J, Gawroński P, Dąbrowska J, Lomsadze A, Pawełkowicz M, et al. The genome sequence of the North European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS One. 2011;6:e22728.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Wang R, Xu X, He X, Sun B, Zhong Y, et al. Cucumis sativus L-type lectin receptor kinase (CsLecRK) gene family response to Phytophthora melonis, Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars. Gene. 2014;549:214–22.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Liu M, Lu L, He M, Qu W, Xu Q. Genome-wide analysis and expression of the calcium-dependent protein kinase gene family in cucumber. Mol Genet Genomics. 2015a;290:1403–14.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Xu R, Zhu B, Yu T, Qu W, Lu L, et al. A high-density genetic map of cucumber derived from Specific Length Amplified Fragment sequencing (SLAF-seq). Front Plant Sci. 2015b;5:768.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan S, Che G, Ding L, Chen Z, Liu X, Wang H, et al. Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Sci Rep. 2016;6:20760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LM, Koo DH, Li YH, Zhang XJ, Luan FS, Havey MJ. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J. 2012;71:895–906.

    Article  CAS  PubMed  Google Scholar 

  • Yang LM, Li DW, Li YH, Gu XF, Huang SW, Garcia-Mas J, et al. A 1681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol. 2013;13:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LM, Koo D-H, Li DW, Zhang T, Jiang JM, Luan FS. Next-generation sequencing, FISH mapping, and synteny-based modeling reveal mechanisms of dysploid chromosome reduction in Cucumis. Plant J. 2014;77:16–30.

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Liang Y, Lv M, Wu J, Lu G, Cao J. Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus. Plant Physiol Biochem. 2014;74:263–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhang BC, Tolstikov V, Turnbull C, Hicks LM, Fiehn O. Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci U S A. 2010;107:13532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WW, Pan J-S, He H-L, Zhang C, Li Z, Zhao JL, et al. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet. 2012;124:249–59.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Mao L, Chen H, Bu F, Li G, Sun J, et al. Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell. 2015;27:1595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Miao H, Li S, Zhang S, Wang Y, Weng Y. A sequencing-based linkage map of cucumber. Mol Plant. 2015;8:961–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Weng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weng, Y. (2016). The Cucumber Genome. In: Grumet, R., Katzir, N., Garcia-Mas, J. (eds) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham. https://doi.org/10.1007/7397_2016_6

Download citation

Publish with us

Policies and ethics