Skip to main content

PRMT Inhibitors

  • Chapter
  • First Online:

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 33))

Abstract

The methylation of arginine residues in numerous protein targets is a post-translational modification that has gained increased interest in the scientific community over the past two decades. Arginine methylation is performed by the dedicated family of protein arginine methyltransferases and is known to be involved in a plethora of cellular pathways and biochemical mechanisms in both healthy and disease states. The development of inhibitors for these enzymes for use as biological tools can lead to a more detailed understanding of the functions of the different members of the PRMT family. In addition, a number of recent studies point towards PRMTs as therapeutic targets for a number of diseases and the first clinical trials with compounds inhibiting PRMTs are now underway. We here provide a broad overview of the current status of the inhibitors that have been developed against PRMTs using both high-throughput screening and rational design approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

aDMA:

Asymmetrically dimethylated arginine

AdoHcy:

S-adenosyl-l-homocysteine

AdoMet:

S-adenosyl-l-methionine

Adox:

Adenosine dialdehyde

AMI:

Arginine methyltransferase inhibitor

AML:

Acute myeloid leukaemia

CARM1:

Coactivator-associated arginine methyltransferase

DNA:

Deoxyribonucleic acid

EBV:

Epstein-Barr virus

EC50:

Half maximal effective concentration

GAR:

Glycine-arginine rich

HEK293T:

Human embryonic kidney cell line

HepG2:

Hepatocellular carcinoma cell line

HIV:

Human immunodeficiency virus

IC50 :

Half maximal inhibitory concentration

Ki:

Inhibition constant

LNCaP :

Lymph node carcinoma of the prostate, prostate cancer cell line

MCF7:

Michigan Cancer Foundation-7, breast cancer cell line

MCL:

Mantle cell lymphoma

MEP50 :

Methylosome protein 50

MLL:

Mixed lineage leukaemia

MMA:

Monomethylated arginine

MTA:

Methylthioadenosine

MTAP:

5-Methylthioadenosine phosphorylase

PABP1:

Poly(A)-binding protein-1

PAD:

Protein arginine deiminase

PGM:

Proline, glycine, methionine-rich

PK/PD:

Pharmacokinetic/pharmacodynamic

PRMT:

Protein arginine N-methyltransferase

RNA:

Ribonucleic acid

RSF1:

Repressor splicing factor

SAH:

S-adenosyl-l-homocysteine

SAHH:

S-adenosyl-l-homocysteine hydrolase

SAM:

S-adenosyl-l-methionine

SAR:

Structure-activity relationship

sDMA:

Symmetrically dimethylated arginine

SET7:

SET domain containing protein 7

SGC:

Structural genomics consortium

Tat:

Trans-activator of transcription

References

  1. Paik WK, Kim S (1967) Enzymatic methylation of protein fractions from calf thymus nuclei. Biochem Biophys Res Commun 29:14–20

    Article  CAS  PubMed  Google Scholar 

  2. Paik WK, Kim S (1968) Protein methylase I. Purification and properties of the enzyme. J Biol Chem 243:2108–2114

    CAS  PubMed  Google Scholar 

  3. Boffa LC et al (1977) Distribution of NG, NG,-dimethylarginine in nuclear protein fractions. Biochem Biophys Res Commun 74:969–976

    Article  CAS  PubMed  Google Scholar 

  4. Lee HW et al (1977) S-adenosylmethionine: protein-arginine methyltransferase. Purification and mechanism of the enzyme. Biochemistry 16:78–85

    Article  CAS  PubMed  Google Scholar 

  5. Ghosh SK et al (1988) Purification and molecular identification of two protein methylases I from calf brain. Myelin basic protein- and histone-specific enzyme. J Biol Chem 263:19024–19033

    CAS  PubMed  Google Scholar 

  6. Najbauer J et al (1993) Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem 268:10501–10509

    CAS  PubMed  Google Scholar 

  7. Rajpurohit R et al (1994) Enzymatic methylation of recombinant heterogeneous nuclear RNP protein A1. Dual substrate specificity for S-adenosylmethionine:histone-arginine N-methyltransferase. J Biol Chem 269:1075–1082

    CAS  PubMed  Google Scholar 

  8. Liu Q, Dreyfuss G (1995) In vivo and in vitro arginine methylation of RNA-binding proteins. Mol Cell Biol 15:2800–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin WJ et al (1996) The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem 271:15034–15044

    Article  CAS  PubMed  Google Scholar 

  10. Scott HS et al (1998) Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). Genomics 48:330–340

    Article  CAS  PubMed  Google Scholar 

  11. Tang J et al (1998) PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J Biol Chem 273:16935–16945

    Article  CAS  PubMed  Google Scholar 

  12. Chen D (1999) Regulation of transcription by a protein methyltransferase. Science 284:2174–2177

    Article  CAS  PubMed  Google Scholar 

  13. Branscombe TL et al (2001) PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J Biol Chem 276:32971–32976

    Article  CAS  PubMed  Google Scholar 

  14. Frankel A et al (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277:3537–3543

    Article  CAS  PubMed  Google Scholar 

  15. Lee JH et al (2005) PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. J Biol Chem 280:3656–3664

    Article  CAS  PubMed  Google Scholar 

  16. Miranda TB et al (2004) PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J Biol Chem 279:22902–22907

    Article  CAS  PubMed  Google Scholar 

  17. Lee J et al (2005) PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J Biol Chem 280:32890–32896

    Article  CAS  PubMed  Google Scholar 

  18. Cook JR et al (2006) FBXO11/PRMT9, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues. Biochem Biophys Res Commun 342:472–481

    Article  CAS  PubMed  Google Scholar 

  19. Thompson PR, Fast W (2006) Histone citrullination by protein arginine deiminase: is arginine methylation a green light or a roadblock? ACS Chem Biol 1:433–441

    Article  CAS  PubMed  Google Scholar 

  20. Chang B et al (2007) JMJD6 is a histone arginine demethylase. Science 318:444–447

    Article  CAS  PubMed  Google Scholar 

  21. Webby CJ et al (2009) Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325:90–93

    Article  CAS  PubMed  Google Scholar 

  22. Unoki M et al (2013) Lysyl 5-hydroxylation, a novel histone modification, by jumonji domain containing 6 (JMJD6). J Biol Chem 288:6053–6062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang F et al (2014) JMJD6 promotes Colon carcinogenesis through negative regulation of p53 by hydroxylation. PLoS Biol 12:e1001819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boeckel J-N et al (2011) Jumonji domain-containing protein 6 (Jmjd6) is required for angiogenic sprouting and regulates splicing of VEGF-receptor 1. Proc Natl Acad Sci U S A 108:3276–3281

    Article  PubMed  PubMed Central  Google Scholar 

  25. Han G et al (2012) The hydroxylation activity of Jmjd6 is required for its homo-oligomerization. J Cell Biochem 113:1663–1670

    CAS  PubMed  Google Scholar 

  26. Böttger A et al (2015) The oxygenase Jmjd6–a case study in conflicting assignments. Biochem J 468:191–202

    Article  CAS  PubMed  Google Scholar 

  27. Walport LJ et al (2016) Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun 7:11974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uhlmann T et al (2012) A method for large-scale identification of protein arginine methylation. Mol Cell Proteomics 11:1489–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sylvestersen KB et al (2014) Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest. Mol Cell Proteomics 13:2072–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Larsen SC et al (2016) Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci Signal 9:rs9

    Article  CAS  PubMed  Google Scholar 

  31. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13:37–50

    Article  CAS  PubMed  Google Scholar 

  33. Franceschelli S et al (2013) Biological functional relevance of asymmetric dimethylarginine (ADMA) in cardiovascular disease. Int J Mol Sci 14:24412–24421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zakrzewicz D, Eickelberg O (2009) From arginine methylation to ADMA: a novel mechanism with therapeutic potential in chronic lung diseases. BMC Pulm Med 9:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zakrzewicz D et al (2012) Protein arginine methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. Int J Mol Sci 13:12383–12400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeong S-J et al (2006) Coactivator-associated arginine methyltransferase 1 enhances transcriptional activity of the human T-cell Lymphotropic virus type 1 long terminal repeat through direct interaction with tax. J Virol 80:10036–10044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie B et al (2007) Arginine methylation of the human immunodeficiency virus type 1 tat protein by PRMT6 negatively affects tat interactions with both cyclin T1 and the tat transactivation region. J Virol 81:4226–4234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alinari L et al (2015) Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood 125:2530–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng D et al (2004) Small molecule regulators of protein arginine methyltransferases. J Biol Chem 279:23892–23899

    Article  CAS  PubMed  Google Scholar 

  40. Peng C, Wong CC (2017) The story of protein arginine methylation: characterization, regulation, and function. Expert Rev Proteomics 14:157–170

    Article  CAS  PubMed  Google Scholar 

  41. Kaniskan HÜ et al (2017) Inhibitors of protein methyltransferases and demethylases. Chem Rev 118:989–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blanc RS, Richard S (2017) Arginine methylation: the coming of age. Mol Cell 65:8–24

    Article  CAS  PubMed  Google Scholar 

  43. Morettin A et al (2015) Arginine methyltransferases as novel therapeutic targets for breast cancer. Mutagenesis 30:177–189

    Article  CAS  PubMed  Google Scholar 

  44. Boriack-Sjodin PA, Swinger KK (2016) Protein methyltransferases: a distinct, diverse, and dynamic family of enzymes. Biochemistry 55:1557–1569

    Article  CAS  PubMed  Google Scholar 

  45. Schapira M, Ferreira de Freitas R (2014) Structural biology and chemistry of protein arginine methyltransferases. Med Chem Commun 5:1779–1788

    Article  CAS  Google Scholar 

  46. Scheer S et al (2019) A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nat Commun 10:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kryukov GV et al (2016) MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351:1214–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marjon K et al (2016) MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep 15:574–587

    Article  CAS  PubMed  Google Scholar 

  49. Mavrakis KJ et al (2016) Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351:1208–1213

    Article  CAS  PubMed  Google Scholar 

  50. Eram MS et al (2016) A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem Biol 11:772–781

    Article  CAS  PubMed  Google Scholar 

  51. Tang J et al (2000) Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem 275:19866–19876

    Article  CAS  PubMed  Google Scholar 

  52. Tang J et al (2000) PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem 275:7723–7730

    Article  CAS  PubMed  Google Scholar 

  53. Goulet I et al (2007) Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J Biol Chem 282:33009–33021

    Article  CAS  PubMed  Google Scholar 

  54. Dhar S et al (2013) Loss of the major type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci Rep 3:1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wooderchak WL et al (2008) Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond the “RGG” paradigm. Biochemistry 47:9456–9466

    Article  CAS  PubMed  Google Scholar 

  56. Wei H et al (2014) Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle 13:32–41

    Article  CAS  PubMed  Google Scholar 

  57. Baldwin RM et al (2012) Alternatively spliced protein arginine methyltransferase 1 isoform PRMT1v2 promotes the survival and invasiveness of breast cancer cells. Cell Cycle 11:4597–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seligson DB et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

    Article  CAS  PubMed  Google Scholar 

  59. Avasarala S et al (2015) PRMT1 is a novel regulator of epithelial-mesenchymal-transition in non-small cell lung cancer. J Biol Chem 290:13479–13489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mathioudaki K et al (2008) The PRMT1 gene expression pattern in colon cancer. Br J Cancer 99:2094–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Papadokostopoulou A et al (2009) Colon cancer and protein arginine methyltransferase 1 gene expression. Anticancer Res 29:1361–1366

    CAS  PubMed  Google Scholar 

  62. Chuang C et al (2017) PRMT1 expression is elevated in head and neck cancer and inhibition of protein arginine methylation by adenosine dialdehyde or PRMT1 knockdown downregulates proliferation and migration of oral cancer cells. Oncol Rep 38:1115–1123

    Article  CAS  PubMed  Google Scholar 

  63. Yoshimatsu M et al (2011) Dysregulation of PRMT1 and PRMT6, type I arginine methyltransferases, is involved in various types of human cancers. Int J Cancer 128:562–573

    Article  CAS  PubMed  Google Scholar 

  64. Cheung N et al (2007) Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 9:1208–1215

    Article  CAS  PubMed  Google Scholar 

  65. Shia W-J et al (2012) PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood 119:4953–4962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun Q et al (2015) PRMT1 upregulated by epithelial Proinflammatory cytokines participates in COX2 expression in fibroblasts and chronic antigen-induced pulmonary inflammation. J Immunol 195:298–306

    Article  CAS  PubMed  Google Scholar 

  67. Iwasaki H (2009) Impaired PRMT1 activity in the liver and pancreas of type 2 diabetic Goto-Kakizaki rats. Life Sci 85:161–166

    Article  CAS  PubMed  Google Scholar 

  68. Li Y et al (2015) Arginine methyltransferase 1 in the nucleus Accumbens regulates behavioral effects of cocaine. J Neurosci 35:12890–12902

    Article  CAS  PubMed  Google Scholar 

  69. Ragno R et al (2007) Small molecule inhibitors of histone arginine methyltransferases: homology modeling, molecular docking, binding mode analysis, and biological evaluations. J Med Chem 50:1241–1253

    Article  CAS  PubMed  Google Scholar 

  70. Mai A et al (2008) Epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (Sirtuin) inhibitors. J Med Chem 51:2279–2290

    Article  CAS  PubMed  Google Scholar 

  71. Feng Y et al (2010) Discovery and mechanistic study of a class of protein arginine methylation inhibitors. J Med Chem 53:6028–6039

    Article  CAS  PubMed  Google Scholar 

  72. Wang J et al (2012) Pharmacophore-based virtual screening and biological evaluation of small molecule inhibitors for protein arginine methylation. J Med Chem 55:7978–7987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bonham K et al (2010) Effects of a novel arginine methyltransferase inhibitor on T-helper cell cytokine production. FEBS J 277:2096–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spannhoff A et al (2007) Target-based approach to inhibitors of histone arginine methyltransferases. J Med Chem 50:2319–2325

    Article  CAS  PubMed  Google Scholar 

  75. Bissinger E-M et al (2011) Acyl derivatives of p-aminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1. Bioorg Med Chem 19:3717–3731

    Article  CAS  PubMed  Google Scholar 

  76. Spannhoff A et al (2007) A novel arginine methyltransferase inhibitor with cellular activity. Bioorg Med Chem Lett 17:4150–4153

    Article  CAS  PubMed  Google Scholar 

  77. Heinke R et al (2009) Virtual screening and biological characterization of novel histone arginine methyltransferase PRMT1 inhibitors. ChemMedChem 4:69–77

    Article  CAS  PubMed  Google Scholar 

  78. Xie Y et al (2014) Virtual screening and biological evaluation of novel small molecular inhibitors against protein arginine methyltransferase 1 (PRMT1). Org Biomol Chem 12:9665–9673

    Article  CAS  PubMed  Google Scholar 

  79. Dowden J et al (2010) Toward the development of potent and selective bisubstrate inhibitors of protein arginine methyltransferases. Bioorg Med Chem Lett 20:2103–2105

    Article  CAS  PubMed  Google Scholar 

  80. Dowden J et al (2011) Small molecule inhibitors that discriminate between protein arginine N-methyltransferases PRMT1 and CARM1. Org Biomol Chem 9:7814

    Article  CAS  PubMed  Google Scholar 

  81. Lakowski TM et al (2010) Nη-substituted Arginyl peptide inhibitors of protein arginine N-methyltransferases. ACS Chem Biol 5:1053–1063

    Article  CAS  PubMed  Google Scholar 

  82. ’t Hart P et al (2011) Peptidic partial bisubstrates as inhibitors of the protein arginine N-methyltransferases. Chembiochem 12:1427–1432

    Article  CAS  PubMed  Google Scholar 

  83. ’t Hart P et al (2012) Analogues of the HIV-Tat peptide containing Nη-modified arginines as potent inhibitors of protein arginine N-methyltransferases. Med Chem Commun 3:1235–1244

    Article  CAS  Google Scholar 

  84. Thomas D et al (2014) Protein arginine N-methyltransferase substrate preferences for different Nη-substituted Arginyl peptides. Chembiochem 15:1607–1613

    Article  CAS  PubMed  Google Scholar 

  85. Osborne T et al (2008) In situ generation of a Bisubstrate analogue for protein arginine methyltransferase 1. J Am Chem Soc 130:4574–4575

    Article  CAS  PubMed  Google Scholar 

  86. Luo Y et al (2006) Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. Biochemistry 45:11727–11736

    Article  CAS  PubMed  Google Scholar 

  87. Obianyo O et al (2010) A chloroacetamidine-based inactivator of protein arginine methyltransferase 1: design, synthesis, and in vitro and in vivo evaluation. Chembiochem 11:1219–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Obianyo O et al (2011) Activity-based protein profiling of protein arginine methyltransferase 1. ACS ChemBio 6:1127–1135

    Article  CAS  Google Scholar 

  89. Weerapana E et al (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11:509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dillon MBC et al (2012) Novel inhibitors for PRMT1 discovered by high-throughput screening using activity-based fluorescence polarization. ACS Chem Biol 7:1198–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yan L et al (2014) Diamidine compounds for selective inhibition of protein arginine methyltransferase 1. J Med Chem 57:2611–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang J et al (2017) Discovery of decamidine as a new and potent PRMT1 inhibitor. Med Chem Commun 8:440–444

    Article  CAS  Google Scholar 

  94. Sinha SH et al (2012) Synthesis and evaluation of carbocyanine dyes as PRMT inhibitors and imaging agents. Eur J Med Chem 54:647–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hu H et al (2015) Exploration of cyanine compounds as selective inhibitors of protein arginine methyltransferases: synthesis and biological evaluation. J Med Chem 58:1228–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yu XR et al (2015) Discovery and structure-activity analysis of 4-((5-nitropyrimidin-4-yl)amino)benzimidamide derivatives as novel protein arginine methyltransferase 1 (PRMT1) inhibitors. Bioorg Med Chem Lett 25:5449–5453

    Article  CAS  PubMed  Google Scholar 

  97. Lakowski TM, Frankel A (2009) Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochem J 421:253–261

    Article  CAS  PubMed  Google Scholar 

  98. Cura V et al (2017) Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. FEBS J 284:77–96

    Article  CAS  PubMed  Google Scholar 

  99. Qi C (2002) Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha. J Biol Chem 277:28624–28630

    Article  CAS  PubMed  Google Scholar 

  100. Meyer R et al (2007) PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor. J Steroid Biochem Mol Biol 107:1–14

    Article  CAS  PubMed  Google Scholar 

  101. Vhuiyan MI et al (2017) PRMT2 interacts with splicing factors and regulates the alternative splicing of BCL-X. J Biochem 162:17–25

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Iwasaki H et al (2010) Disruption of protein arginine N-methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation. Circ Res 107:992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hussein MA et al (2015) LXR-mediated ABCA1 expression and function are modulated by high glucose and PRMT2. PLoS One 10:6–8

    Google Scholar 

  104. Zhong J et al (2014) Nuclear loss of protein arginine N-methyltransferase 2 in breast carcinoma is associated with tumor grade and overexpression of cyclin D1 protein. Oncogene 33:5546–5558

    Article  CAS  PubMed  Google Scholar 

  105. Oh TG et al (2014) PRMT2 and RORγ expression are associated with breast cancer survival outcomes. Mol Endocrinol 28:1166–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. van Haren M et al (2015) Synthesis and evaluation of protein arginine N-methyltransferase inhibitors designed to simultaneously occupy both substrate binding sites. Org Biomol Chem 13:549–560

    Article  CAS  PubMed  Google Scholar 

  107. Zhang X et al (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J 19:3509–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Frankel A, Clarke S (2000) PRMT3 is a distinct member of the protein arginine N-methyltransferase family: conferral of substrate specificity by a zinc-finger domain. J Biol Chem 275:32974–32982

    Article  CAS  PubMed  Google Scholar 

  109. Guo H et al (2014) Profiling substrates of protein arginine N-methyltransferase 3 with S-adenosyl-L-methionine analogues. ACS Chem Biol 9:476–484

    Article  CAS  PubMed  Google Scholar 

  110. Singh V et al (2004) DAL-1/4.1B tumor suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo. Oncogene 23:7761–7771

    Article  CAS  PubMed  Google Scholar 

  111. Siarheyeva A et al (2012) An allosteric inhibitor of protein arginine methyltransferase 3. Structure 20:1425–1435

    Article  CAS  PubMed  Google Scholar 

  112. Liu F et al (2013) Exploiting an allosteric binding site of PRMT3 yields potent and selective inhibitors. J Med Chem 56:2110–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kaniskan HÜ et al (2015) A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew Chem Int Ed 54:5166–5170

    Article  CAS  Google Scholar 

  114. Lee J (2002) PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Rep 3:268–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cheng D et al (2007) The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol Cell 25:71–83

    Article  CAS  PubMed  Google Scholar 

  116. Schurter BT et al (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40:5747–5756

    Article  CAS  PubMed  Google Scholar 

  117. Jacques SL et al (2016) CARM1 preferentially methylates H3R17 over H3R26 through a random kinetic mechanism. Biochemistry 55:1635–1644

    Article  CAS  PubMed  Google Scholar 

  118. Casadio F et al (2013) H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci 110:14894–14899

    Article  PubMed  PubMed Central  Google Scholar 

  119. Feng Q et al (2006) Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol Cell Biol 26:7846–7857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kuhn P et al (2011) Automethylation of CARM1 allows coupling of transcription and mRNA splicing. Nucleic Acids Res 39:2717–2726

    Article  CAS  PubMed  Google Scholar 

  121. Daujat S et al (2002) Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12:2090–2097

    Article  CAS  PubMed  Google Scholar 

  122. Charoensuksai P et al (2015) O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity. Biochem J 466:587–599

    Article  CAS  PubMed  Google Scholar 

  123. Cheng H et al (2013) Overexpression of CARM1 in breast cancer is correlated with poorly characterized clinicopathologic parameters and molecular subtypes. Diagn Pathol 8:129

    PubMed  PubMed Central  Google Scholar 

  124. Kim Y-RR et al (2010) Differential CARM1 expression in prostate and colorectal cancers. BMC Cancer 10:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. C-YY O et al (2011) A coactivator role of CARM1 in the dysregulation of -catenin activity in colorectal cancer cell growth and gene expression. Mol Cancer Res 9:660–670

    Article  CAS  Google Scholar 

  126. Hong H et al (2004) Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer 101:83–89

    Article  CAS  PubMed  Google Scholar 

  127. Osada S et al (2013) Elevated expression of coactivator-associated arginine methyltransferase 1 is associated with early hepatocarcinogenesis. Oncol Rep 30:1669–1674

    Article  CAS  PubMed  Google Scholar 

  128. Purandare AV et al (2008) Pyrazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett 18:4438–4441

    Article  CAS  PubMed  Google Scholar 

  129. Allan M et al (2009) N-Benzyl-1-heteroaryl-3-(trifluoromethyl)-1H-pyrazole-5-carboxamides as inhibitors of co-activator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett 19:1218–1223

    Article  CAS  PubMed  Google Scholar 

  130. Huynh T et al (2009) Optimization of pyrazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett 19:2924–2927

    Article  CAS  PubMed  Google Scholar 

  131. Wan H et al (2009) Benzo[d]imidazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1)-hit to Lead studies. Bioorg Med Chem Lett 19:5063–5066

    Article  CAS  PubMed  Google Scholar 

  132. Therrien E et al (2009) 1,2-diamines as inhibitors of co-activator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett 19:6725–6732

    Article  CAS  PubMed  Google Scholar 

  133. Sack JS et al (2011) Structural basis for CARM1 inhibition by indole and pyrazole inhibitors. Biochem J 436:331–339

    Article  CAS  PubMed  Google Scholar 

  134. Ferreira De Freitas R et al (2016) Discovery of a potent class i protein arginine methyltransferase fragment inhibitor. J Med Chem 59:1176–1183

    Article  CAS  PubMed  Google Scholar 

  135. Shen Y et al (2016) Discovery of a potent, selective, and cell-active dual inhibitor of protein arginine methyltransferase 4 and protein arginine methyltransferase 6. J Med Chem 59:9124–9139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kaniskan HÜ et al (2016) Design and synthesis of selective, small molecule inhibitors of coactivator-associated arginine methyltransferase 1 (CARM1). Med Chem Commun 7:1793–1796

    Article  CAS  Google Scholar 

  137. Nakayama K et al (2018) TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget 9:18480–18493

    PubMed  PubMed Central  Google Scholar 

  138. Ferreira de Freitas R et al (2016) Discovery of a potent and selective coactivator associated arginine methyltransferase 1 (CARM1) inhibitor by virtual screening. J Med Chem 59:6838–6847

    Article  CAS  PubMed  Google Scholar 

  139. Cheng DH et al (2011) Novel 3,5-bis(bromohydroxybenzylidene)piperidin-4-ones as coactivator-associated arginine methyltransferase 1 inhibitors: enzyme selectivity and cellular activity. J Med Chem 54:4928–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Selvi BR et al (2010) Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. J Biol Chem 285:7143–7152

    Article  CAS  PubMed  Google Scholar 

  141. van Haren MJ et al (2017) Transition state mimics are valuable mechanistic probes for structural studies with the arginine methyltransferase CARM1. Proc Natl Acad Sci U S A 114:3625–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pollack BP et al (1999) The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J Biol Chem 274:31531–31542

    Article  CAS  PubMed  Google Scholar 

  143. Wei H et al (2013) PRMT5 dimethylates R30 of the p65 subunit to activate NF- B. Proc Natl Acad Sci U S A 110:13516–13521

    Article  PubMed  PubMed Central  Google Scholar 

  144. Migliori V et al (2012) Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 19:136–144

    Article  CAS  PubMed  Google Scholar 

  145. Ren J et al (2010) Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis. J Biol Chem 285:12695–12705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jansson M et al (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10:1431–1439

    Article  CAS  PubMed  Google Scholar 

  147. Zheng S et al (2013) Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell 52:37–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Powers MA et al (2011) Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res 71:5579–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Andreu-Perez P et al (2011) Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. Sci Signal 4:ra58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Antonysamy S et al (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci U S A 109:17960–17965

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ho M-C et al (2013) Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. PLoS One 8:e57008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Morales Y et al (2016) Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 590:138–152

    Article  CAS  PubMed  Google Scholar 

  153. Cho E-C et al (2012) Arginine methylation controls growth regulation by E2F-1. EMBO J 31:1785–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wei T-YW et al (2012) Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade. Cancer Sci 103:1640–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Győrffy B et al (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 8:e82241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bao X et al (2013) Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer. J Histochem Cytochem 61:206–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pal S et al (2007) Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J 26:3558–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang L et al (2008) Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol 28:6262–6277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chung J et al (2013) Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and Polycomb repressor complex 2 (PRC2) silencing. J Biol Chem 288:35534–35547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nicholas C et al (2013) PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27Kip1. PLoS One 8:e74710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang H et al (1996) Codeletion of the genes for p16INK4, methylthioadenosine phosphorylase, interferon-α1, interferon-β1, and other 9p21 markers in human malignant cell lines. Cancer Genet Cytogenet 86:22–28

    Article  CAS  PubMed  Google Scholar 

  162. Chan-Penebre E et al (2015) A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 11:432–437

    Article  CAS  PubMed  Google Scholar 

  163. Duncan KW et al (2016) Structure and property guided design in the identification of PRMT5 tool compound EPZ015666. ACS Med Chem Lett 7:162–166

    Article  CAS  PubMed  Google Scholar 

  164. Tarighat SS et al (2016) The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 30:789–799

    Article  CAS  PubMed  Google Scholar 

  165. Gerhart SV et al (2018) Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci Rep 8:1–15

    Article  CAS  Google Scholar 

  166. Bonday ZQ et al (2018) LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity. ACS Med Chem Lett 9:612–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. SGC website: GSK591, a chemical probe for PRMT5. http://www.thesgc.org/chemical-probes/GSK591. Accessed Jan 2019

  168. Ji S et al (2016) Discovery of selective protein arginine methyltransferase 5 inhibitors and biological evaluations. Chem Biol Drug Des:585–598

    Google Scholar 

  169. Waldmann T et al (2011) Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenetics Chromatin 4:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hyllus D et al (2007) PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev 21:3369–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Guccione E et al (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449:933–937

    Article  CAS  PubMed  Google Scholar 

  172. Sgarra R et al (2006) The AT-hook of the chromatin architectural transcription factor high mobility group A1a is arginine-methylated by protein arginine methyltransferase 6. J Biol Chem 281:3764–3772

    Article  CAS  PubMed  Google Scholar 

  173. El-Andaloussi N et al (2006) Arginine methylation regulates DNA polymerase β. Mol Cell 22:51–62

    Article  CAS  PubMed  Google Scholar 

  174. Boulanger M-C et al (2005) Methylation of tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J Virol 79:124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Singhroy DN et al (2013) Automethylation of protein arginine methyltransferase 6 (PRMT6) regulates its stability and its anti-HIV-1 activity. Retrovirology 10:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vieira FQ et al (2014) Deregulated expression of selected histone methylases and demethylases in prostate carcinoma. Endocr Relat Cancer 21:51–61

    Article  CAS  PubMed  Google Scholar 

  177. Limm K et al (2013) Deregulation of protein methylation in melanoma. Eur J Cancer 49:1305–1313

    Article  CAS  PubMed  Google Scholar 

  178. Mitchell LH et al (2015) Aryl Pyrazoles as potent inhibitors of arginine methyltransferases: identification of the first PRMT6 tool compound. ACS Med Chem Lett 6:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wu H et al (2016) Structural basis of arginine asymmetrical dimethylation by PRMT6. Biochem J 473:3049–3063

    Article  CAS  PubMed  Google Scholar 

  180. Feng Y et al (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288:37010–37025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gonsalvez GB et al (2007) Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 178:733–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Debler EW et al (2016) A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase. Proc Natl Acad Sci U S A 113:2068–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jain K et al (2016) Protein arginine methyltransferase product specificity is mediated by distinct active-site architectures. J Biol Chem 291:18299–18308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yao R et al (2014) PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res 74:5656–5667

    Article  CAS  PubMed  Google Scholar 

  185. Baldwin RM et al (2015) Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget 6:3013–3032

    Article  PubMed  Google Scholar 

  186. Karkhanis V et al (2012) Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase δ catalytic subunit gene, POLD1. J Biol Chem 287:29801–29814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ferreira TR et al (2014) Altered expression of an RBP-associated arginine methyltransferase 7 in Leishmania major affects parasite infection. Mol Microbiol 94:1085–1102

    Article  CAS  Google Scholar 

  188. Gros L et al (2003) Identification of new drug sensitivity genes using genetic suppressor elements: protein arginine N-methyltransferase mediates cell sensitivity to DNA-damaging agents. Cancer Res 63:164–171

    CAS  PubMed  Google Scholar 

  189. Gros L et al (2006) Characterization of prmt7α and β isozymes from Chinese hamster cells sensitive and resistant to topoisomerase II inhibitors. Biochim Biophys Acta 1760:1646–1656

    Article  CAS  PubMed  Google Scholar 

  190. Verbiest V et al (2008) Protein arginine (N)-methyl transferase 7 (PRMT7) as a potential target for the sensitization of tumor cells to camptothecins. FEBS Lett 582:1483–1489

    Article  CAS  PubMed  Google Scholar 

  191. Smil D et al (2015) Discovery of a dual PRMT5-PRMT7 inhibitor. ACS Med Chem Lett 6:408–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sayegh J et al (2007) Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J Biol Chem 282:36444–36453

    Article  CAS  PubMed  Google Scholar 

  193. Kousaka A et al (2009) The distribution and characterization of endogenous protein arginine N-methyltransferase 8 in mouse CNS. Neuroscience 163:1146–1157

    Article  CAS  PubMed  Google Scholar 

  194. Hernandez S, Dominko T (2016) Novel protein arginine methyltransferase 8 isoform is essential for cell proliferation. J Cell Biochem 117:2056–2066

    Article  CAS  PubMed  Google Scholar 

  195. Scaramuzzino C et al (2013) Protein arginine methyltransferase 1 and 8 interact with FUS to modify its sub-cellular distribution and toxicity in vitro and in vivo. PLoS One 8:e61576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hernandez SJ et al (2017) PRMT8 demonstrates variant-specific expression in cancer cells and correlates with patient survival in breast, ovarian and gastric cancer. Oncol Lett 13:1983–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yang Y et al (2015) PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat Commun 6:6428

    Article  CAS  PubMed  Google Scholar 

  198. Gayatri S et al (2016) Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs. Sci Rep 6:28718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. ClinicalTrials.gov ID: NCT02783300. A phase I, open-label, dose escalation study to investigate the safety, pharmacokinetics, pharmacodynamics and clinical activity of GSK3326595 in subjects with solid tumors and non-Hodgkin’s Lymp. Accessed Jan 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel I. Martin .

Editor information

Editors and Affiliations

Ethics declarations

Funding: The support of Leiden University is kindly acknowledged.

Conflict of Interest: Matthijs van Haren declares that he has no conflict of interest. Nathaniel I. Martin declares that he has no conflict of interest.

Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Haren, M.J., Martin, N.I. (2019). PRMT Inhibitors. In: Mai, A. (eds) Chemical Epigenetics. Topics in Medicinal Chemistry, vol 33. Springer, Cham. https://doi.org/10.1007/7355_2019_73

Download citation

Publish with us

Policies and ethics