Skip to main content

The Cyclic Lipopeptide Antibiotics

  • Chapter
  • First Online:
Antibacterials

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 26))

Abstract

The cyclic lipopeptides comprise a number of clinically relevant classes of antibiotics that date back from the discovery of the polymyxins in 1947 to the recent introduction of the semi-synthetic lipoglycopeptides. These natural products and natural product derivatives most often originate from soil-inhabiting and/or plant-derived producing organisms. The cyclic lipopeptides consist of peptide macrocycles that are acylated with a fatty acid lipid, and show great structural diversity owing to their nearly exclusive non-ribosomal synthesis production and/or post-translational modification. This review presents a summary of the main classes of cyclic lipopeptide antibiotics with regard to their characteristic structural features, modes of action, clinical relevance, and the onset of bacterial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dexter AF, Middelberg APJ (2008) Peptides as functional surfactants. Ind Eng Chem Res 47:6391–6398. doi:10.1021/ie800127f

    Article  CAS  Google Scholar 

  2. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162. doi:10.1007/s002530051502

    Article  PubMed  CAS  Google Scholar 

  3. Schneider T, Müller A, Miess H, Gross H (2014) Cyclic lipopeptides as antibacterial agents – potent antibiotic activity mediated by intriguing mode of actions. Int J Med Microbiol 304:37–43. doi:10.1016/j.ijmm.2013.08.009

    Article  PubMed  CAS  Google Scholar 

  4. Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36:4–31. doi:10.1002/med.21321

    Article  PubMed  CAS  Google Scholar 

  5. Cotter PD, Ross RP, Hill C (2013) Bacteriocins – a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. doi:10.1038/nrmicro2937

    Article  PubMed  CAS  Google Scholar 

  6. Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31:379–382. doi:10.1038/nbt.2572

    Article  PubMed  CAS  Google Scholar 

  7. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143. doi:10.1128/MMBR.00054-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184. doi:10.1007/s10295-013-1389-9

    Article  PubMed  CAS  Google Scholar 

  9. Zhao X, Kuipers OP (2016) Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 17(1):882. doi:10.1186/s12864-016-3224-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. doi:10.1111/j.1574-6976.2010.00221.x

    Article  PubMed  CAS  Google Scholar 

  11. Stansly PG, Shepherd RG, White HJ (1947) Polymyxin: a new chemotherapeutic agent. Johns Hopkins Med J 81:43–54

    CAS  Google Scholar 

  12. Trimble MJ, Mlynárčik P, Kolář M, Hancock REW (2016) Polymyxin: alternative mechanisms of action and resistance. Cold Spring Harb Perspect Med 6:a025288. doi:10.1101/cshperspect.a025288

    Article  PubMed  CAS  Google Scholar 

  13. Newton BA (1956) The properties and mode of action of the polymyxins. Bacteriol Rev 20:14–27

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Velkov T, Thompson PE, Nation RL, Li J (2009) Structure-activity relationships of polymyxin antibiotics. J Med Chem 53:1898–1916. doi:10.1021/jm900999h

    Article  CAS  Google Scholar 

  15. Beveridge EG, Martin AJ (1967) Sodium sulphomethyl derivatives of polymyxins. Br J Pharmacol 29:125–135. doi:10.1111/j.1476-5381.1967.tb01946.x

    Article  CAS  Google Scholar 

  16. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K (2004) Pharmacokinetics of colistin methanesulphonate and colistin in rats following an intravenous dose of colistin methanesulphonate. J Antimicrob Chemother 53:837–840. doi:10.1093/jac/dkh167

    Article  PubMed  CAS  Google Scholar 

  17. Conway SP, Pond MN, Watson A, Etherington C, Robey HL, Goldman MH (1997) Intravenous colistin sulphomethate in acute respiratory exacerbations in adult patients with cystic fibrosis. Thorax 52:987–993. doi:10.1136/thx.52.11.987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Falagas ME, Rizos M, Bliziotis LA, Rellos K, Kasiakou SK, Michalopoulos A (2005) Toxicity after prolonged (more than four weeks) administration of intravenous colistin. BMC Infect Dis 5:1. doi:10.1186/1471-2334-5-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341. doi:10.1086/429323

    Article  PubMed  CAS  Google Scholar 

  20. Monaco M, Giani T, Raffone M, Arena F, Garcia-Fernandez A, Pollini S, Network EuSCAPE-Italy C, Grundmann H, Pantosti A, Rossolini G (2014) Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, Nov 2013–Apr 2014. Eurosurveillance 19:20939–20918. doi:10.2807/1560-7917.ES2014.19.42.20939

    Article  PubMed  Google Scholar 

  21. Cai Y, Chai D, Wang R, Liang B, Bai N (2012) Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 67:1607–1615. doi:10.1093/jac/dks084

    Article  PubMed  CAS  Google Scholar 

  22. Groisman EA, Kayser J, Soncini FC (1997) Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179:7040–7045. doi:10.1128/jb.179.22.7040-7045.1997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, Miller SI (1998) PmrA–PmrB-regulated genes necessary for 4-aminoarabinose lipid a modification and polymyxin resistance. Mol Microbiol 27:1171–1182. doi:10.1046/j.1365-2958.1998.00757.x

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu L-F, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu J-H, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168. doi:10.1016/S1473-3099(15)00424-7

    Article  PubMed  CAS  Google Scholar 

  25. Heinemann B, Kaplan M, Muir R, Hooper I (1953) Amphomycin, a new antibiotic. Antibiot Chemother (Northfield) 3:1239–1242

    CAS  Google Scholar 

  26. Debono M, Barnhart M, Carrell CB, Hoffmann JA, Occolowitz JL, Abbott BJ, Fukuda DS, Hamill RL, Biemann K, Herlihy WC (1987) A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J Antibiot 40:761–777. doi:10.7164/antibiotics.40.761

    Article  PubMed  CAS  Google Scholar 

  27. Robbel L, Marahiel MA (2010) Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J Biol Chem 285:27501–27508. doi:10.1074/jbc.R110.128181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pogliano J, Pogliano N, Silverman JA (2012) Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 194:4494–4504. doi:10.1128/JB.00011-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Müller A, Wenzel M, Strahl H, Grein F, Saaki TNV, Kohl B, Siersma T, Bandow JE, Sahl H-G, Schneider T, Hamoen LW (2016) Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci U S A 113:7077–7086. doi:10.1073/pnas.1611173113

    Article  CAS  Google Scholar 

  30. Renzoni A, Kelley WL, Rosato RR, Martinez MP, Roch M, Fatouraei M, Haeusser DP, Margolin W, Fenn S, Turner RD, Foster SJ, Rosato AE (2017) Molecular bases determining daptomycin resistance-mediated resensitization to β-lactams (seesaw effect) in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 61:e01634–e01616. doi:10.1128/AAC.01634-16

    Article  PubMed  CAS  Google Scholar 

  31. Henson KER, Yim J, Smith JR, Sakoulas G, Rybak MJ (2017) β-lactamase inhibitors enhance the synergy between β-lactam antibiotics and daptomycin against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 61:e01564–e01516. doi:10.1128/AAC.01564-16

    Article  PubMed  CAS  Google Scholar 

  32. Taylor SD, Palmer M (2016) The action mechanism of daptomycin. Bioorg Med Chem 24:6253–6268. doi:10.1016/j.bmc.2016.05.052

    Article  PubMed  CAS  Google Scholar 

  33. May M (2014) Drug development: time for teamwork. Nature 509:S4–S5. doi:10.1038/509S4a

    Article  PubMed  CAS  Google Scholar 

  34. Munita JM, Murray BE, Arias CA (2014) Daptomycin for the treatment of bacteraemia due to vancomycin-resistant Enterococci. Int J Antimicrob Agents 44:387–395. doi:10.1016/j.ijantimicag.2014.08.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kosmidis C, Levine DP (2010) Daptomycin: pharmacology and clinical use. Expert Opin Pharmacother 11:615–625. doi:10.1517/14656561003598893

    Article  PubMed  CAS  Google Scholar 

  36. Stefani S, Campanile F, Santagati M, Mezzatesta ML, Cafiso V, Pacini G (2015) Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: a review of the available evidence. Int J Antimicrob Agents 46:278–289. doi:10.1016/j.ijantimicag.2015.05.008

    Article  PubMed  CAS  Google Scholar 

  37. Bayer AS, Schneider T, Sahl H-G (2013) Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci 1277:139–158. doi:10.1111/j.1749-6632.2012.06819.x

    Article  PubMed  CAS  Google Scholar 

  38. Miller WR, Bayer AS, Arias CA (2016) Mechanism of action and resistance to daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb Perspect Med 6:a026997. doi:10.1101/cshperspect.a026997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB, Edwards AM (2016) Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol. doi: 10.1038/nmicrobiol.2016.194

  40. Borders DB, Leese RA, Jarolmen H, Francis ND, Fantini AA, Falla T, Fiddes JC, Aumelas A (2007) Laspartomycin, an acidic lipopeptide antibiotic with a unique peptide core. J Nat Prod 70:443–446. doi:10.1021/np068056f

    Article  PubMed  CAS  Google Scholar 

  41. Müller C, Nolden S, Gebhardt P, Heinzelmann E, Lange C, Puk O, Welzel K, Wohlleben W, Schwartz D (2007) Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis. Antimicrob Agents Chemother 51:1028–1037. doi:10.1128/AAC.00942-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schneider T, Gries K, Josten M, Wiedemann I, Pelzer S, Labischinski H, Sahl HG (2009) The lipopeptide antibiotic friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob Agents Chemother 53:1610–1618. doi:10.1128/AAC.01040-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kleijn LHJ, Oppedijk SF, t Hart P, van Harten RM, Martin-Visscher LA, Kemmink J, Breukink E, Martin NI (2016) Total synthesis of laspartomycin C and characterization of its antibacterial mechanism of action. J Med Chem 59:3569–3574. doi:10.1021/acs.jmedchem.6b00219

    Article  PubMed  CAS  Google Scholar 

  44. Bunkoczi G, Vertesy L, Sheldrick GM (2005) Structure of the lipopeptide antibiotic tsushimycin. Acta Cryst D 61:1160–1164. doi:10.2210/pdb1w3m/pdb

    Article  Google Scholar 

  45. Rubinchik E, Schneider T, Elliott M, Scott WRP, Pan J, Anklin C, Yang H, Dugourd D, Müller A, Gries K, Straus SK, Sahl HG, Hancock REW (2011) Mechanism of action and limited cross-resistance of new lipopeptide MX-2401. Antimicrob Agents Chemother 55:2743–2754. doi:10.1128/AAC.00170-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ryder NS (2009) Discontinued drugs in 2008: anti-infectives. Expert Opin Investig Drugs 19:1–21. doi:10.1517/13543780903473150

    Article  CAS  Google Scholar 

  47. Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448. doi:10.1021/cr030103a

    Article  PubMed  CAS  Google Scholar 

  48. Leclercq R, Derlot E, Duval J, Courvalin P (2010) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161. doi:10.1056/NEJM198807213190307

    Article  Google Scholar 

  49. Van Bambeke F (2015) Lipoglycopeptide antibacterial agents in gram-positive infections: a comparative review. Drugs 75:2073–2095. doi:10.1007/s40265-015-0505-8

    Article  PubMed  CAS  Google Scholar 

  50. Leadbetter MR, Adams SM, Bazzini B, Fatheree PR, Karr DE, Krause KM, Lam BMT, Linsell MS, Nodwell MB, Pace JL, Quast K, Shaw J-P, Soriano E, Trapp SG, Villena JD, Wu TX, Christensen BG, Judice JK (2004) Hydrophobic vancomycin derivatives with improved ADME properties. J Antibiot 57:326–336. doi:10.7164/antibiotics.57.326

    Article  PubMed  CAS  Google Scholar 

  51. Cooper RDG, Snyder NJ, Zweifel MJ, Staszak MA, Wilkie SC, Nicas TI, Muller DL, Butler TF, Rodriguez MJ, Huff BE, Thompson RC (1996) Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot 49:575–581. doi:10.7164/antibiotics.49.575

    Article  PubMed  CAS  Google Scholar 

  52. Malabarba A, Ciabatti R, Scotti R, Goldstein BP, Ferrari P, Kurz M, Andreini BP, Denaro M (1995) New semisynthetic glycopeptides MDL 63246 and MDL 63042, and other amide derivatives of antibiotic A-40926 active against highly glycopeptide-resistant VanA Enterococci. J Antibiot 48:869–883. doi:10.7164/antibiotics.48.869

    Article  PubMed  CAS  Google Scholar 

  53. Zeng D, Debabov D, Hartsell TL, Cano RJ, Adams S, Schuyler JA, McMillan R, Pace JL (2016) Approved glycopeptide antibacterial drugs: mechanism of action and resistance. Cold Spring Harb Perspect Med 6:a026989. doi:10.1101/cshperspect.a026989

    Article  PubMed  CAS  Google Scholar 

  54. Barna JCJ, Williams DH (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38:339–357

    Article  CAS  PubMed  Google Scholar 

  55. Kim SJ, Cegelski L, Stueber D, Singh M, Dietrich E, Tanaka KSE, Parr Jr TR, Far AR, Schaefer J (2008) Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus. J Mol Biol 377:281–293. doi:10.1016/j.jmb.2008.01.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Higgins DL, Chang R, Debabov DV, Leung J, Wu T, Krause KM, Sandvik E, Hubbard JM, Kaniga K, Schmidt Jr DE, Gao Q, Cass RT, Karr DE, Benton BM, Humphrey PP (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134. doi:10.1128/AAC.49.3.1127-1134.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Svetitsky S, Leibovici L, Paul M (2009) Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother 53:4069–4079. doi:10.1128/AAC.00341-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wenzler E, Liao S, Rodvold KA (2016) In: Rotschafer JC, Andes DR, Rodvold KA (eds) Antibiotic pharmacodynamics. Springer, New York, NY, pp 285–315

    Google Scholar 

  59. Masterton R, Cornaglia G, Courvalin P, Lode HM, Rello J, Torres A (2015) The clinical positioning of telavancin in Europe. Int J Antimicrob Agents 45:213–220. doi:10.1016/j.ijantimicag.2014.12.006

    Article  PubMed  CAS  Google Scholar 

  60. Sweeney D, Stoneburner A, Shinabarger DL, Arhin FF, Belley A, Moeck G, Pillar CM (2016) Comparative in vitro activity of oritavancin and other agents against vancomycin-susceptible and -resistant Enterococci. J Antimicrob Chemother. doi: 10.1093/jac/dkw451

    Article  PubMed  CAS  Google Scholar 

  61. Karlowsky JA, Nichol K, Zhanel GG (2015) Telavancin: mechanisms of action, in vitro activity, and mechanisms of resistance. Clin Infect Dis 61:S58–S68. doi:10.1093/cid/civ534

    Article  PubMed  CAS  Google Scholar 

  62. Goto S, Kuwahara S, Zenyoji H, Okubo N (1968) In vitro and in vitro evaluation of enduracidin, a new peptide antibiotic substance. J Antibiot 21:119–125. doi:10.7164/antibiotics.21.119

    Article  PubMed  CAS  Google Scholar 

  63. Cavalleri B, Pagani H, Volpe G, Selva E, Parenti F (1984) A-16686, a new antibiotic from Actinoplanes. J Antibiot 37:309–317. doi:10.7164/antibiotics.37.309

    Article  PubMed  CAS  Google Scholar 

  64. Shin D, Rew Y, Boger DL (2004) Total synthesis and structure of the ramoplanin A1 and A3 aglycons: two minor components of the ramoplanin complex. Proc Natl Acad Sci U S A 101:11977–11979. doi:10.1073/pnas.0401419101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Castiglione F, Marazzi A, Meli M, Colombo G (2005) Structure elucidation and 3D solution conformation of the antibiotic enduracidin determined by NMR spectroscopy and molecular dynamics. Magn Reson Chem 43:603–610. doi:10.1002/mrc.1606

    Article  PubMed  CAS  Google Scholar 

  66. Fang X, Tiyanont K, Zhang Y, Wanner J, Boger D, Walker S (2006) The mechanism of action of ramoplanin and enduracidin. Mol Biosyst 2:69–76. doi:10.1039/B515328J

    Article  PubMed  CAS  Google Scholar 

  67. Cheng M, Huang JX, Ramu S, Butler MS, Cooper MA (2014) Ramoplanin at bactericidal concentrations induces bacterial membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 58:6819–6827. doi:10.1128/AAC.00061-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Farver DK, Hedge DD, Lee SC (2005) Ramoplanin: a lipoglycodepsipeptide antibiotic. Ann Pharmacother 39:863–868. doi:10.1345/aph.1E397

    Article  PubMed  CAS  Google Scholar 

  69. Van Bambeke F (2006) Glycopeptides and glycodepsipeptides in clinical development: a comparative review of their antibacterial spectrum, pharmacokinetics and clinical efficacy. Curr Opin Investig Drugs 7:740–749

    PubMed  Google Scholar 

  70. Butler MS, Blaskovich MA, Cooper MA (2017) Antibiotics in the clinical pipeline at the end of 2015. J Antibiot. doi: 10.1038/ja.2016.72

    Article  PubMed  CAS  Google Scholar 

  71. Stiefel U, Pultz NJ, Helfand MS, Donskey CJ (2004) Efficacy of oral ramoplanin for inhibition of intestinal colonization by vancomycin-resistant Enterococci in mice. Antimicrob Agents Chemother 48:2144–2148. doi:10.1128/AAC.48.6.2144-2148.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Peromet M, Schoutens E, Yourassowsky E (1973) Clinical and microbiological study of enduracidin in infections due to methicillin-resistant strains of Staphylococcus aureus. Chemotherapy 19:53–61. doi:10.1159/000221439

    Article  PubMed  CAS  Google Scholar 

  73. McCafferty DG, Cudic P, Frankel BA, Barkallah S, Kruger RG, Li W (2002) Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers 66:261–284. doi:10.1002/bip.10296

    Article  PubMed  CAS  Google Scholar 

  74. Walker S, Chen L, Hu Y, Rew Y, Shin D, Boger DL (2005) Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 105:449–476. doi:10.1021/cr030106n

    Article  PubMed  CAS  Google Scholar 

  75. Michel KH, Kastner RE (1985) A54556 Antibiotics and process for production thereof. US4492650A

    Google Scholar 

  76. Brötz-Oesterhelt H, Beyer D, Kroll H-P, Endermann R, Ladel C, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Henninger K, Bandow JE, Sahl H-G, Labischinski H (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11:1082–1087. doi:10.1038/nm1306

    Article  PubMed  CAS  Google Scholar 

  77. Koshino H, Osada H, Yano T, Uzawa J, Isono K (1991) The structure of enopeptins a and B, novel depsipeptide antibiotics. Tetrahedron Lett 32:7707–7710. doi:10.1016/0040-4039(91)80571-M

    Article  CAS  Google Scholar 

  78. Hinzen B, Raddatz S, Paulsen H, Lampe T, Schumacher A, Häbich D, Hellwig V, Benet Buchholz J, Endermann R, Labischinski H, Brötz-Oesterhelt H (2006) Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics. ChemMedChem 1:689–693. doi:10.1002/cmdc.200600055

    Article  PubMed  CAS  Google Scholar 

  79. Lee B-G, Park EY, Lee K-E, Jeon H, Sung KH, Paulsen H, Rübsamen-Schaeff H, Brötz-Oesterhelt H, Song HK (2010) Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 17:471–478. doi:10.1038/nsmb.1787

    Article  PubMed  CAS  Google Scholar 

  80. Carney DW, Schmitz KR, Truong JV, Sauer RT, Sello JK (2014) Restriction of the conformational dynamics of the cyclic acyldepsipeptide antibiotics improves their antibacterial activity. J Am Chem Soc 136:1922–1929. doi:10.1021/ja410385c

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Arvanitis M, Li G, Li D-D, Cotnoir D, Ganley-Leal L, Carney DW, Sello JK, Mylonakis E (2016) A conformationally constrained cyclic acyldepsipeptide is highly effective in mice infected with methicillin-susceptible and -resistant Staphylococcus aureus. PLoS One 11:e0153912. doi:10.1371/journal.pone.0153912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–370. doi:10.1038/nature12790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gominet M, Seghezzi N, Mazodier P (2011) Acyl depsipeptide (ADEP) resistance in Streptomyces. Microbiology 157:2226–2234. doi:10.1099/mic.0.048454-0

    Article  PubMed  CAS  Google Scholar 

  84. Johnson BA, Anker H, Meleney FL (1945) Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science 102:376–377. doi:10.1126/science.102.2650.376

    Article  PubMed  CAS  Google Scholar 

  85. Ming L-J, Epperson JD (2002) Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. J Inorg Biochem 91:46–58. doi:10.1016/S0162-0134(02)00464-6

    Article  PubMed  CAS  Google Scholar 

  86. Storm DR, Strominger JL (1973) Complex formation between bacitracin peptides and isoprenyl pyrophosphates. J Biol Chem 248:3940–3945

    PubMed  CAS  Google Scholar 

  87. Economou NJ, Cocklin S, Loll PJ (2013) High-resolution crystal structure reveals molecular details of target recognition by bacitracin. Proc Natl Acad Sci U S A 110:14207–14212. doi:10.1073/pnas.1308268110

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lin FL, Woodmansee D, Patterson R (1998) Near-fatal anaphylaxis to topical bacitracin ointment. J Allergy Clin Immunol 101:136–137. doi:10.1016/S0091-6749(98)70209-X

    Article  PubMed  CAS  Google Scholar 

  89. Charlebois A, Jalbert L-A, Harel J, Masson L, Archambault M (2012) Characterization of genes encoding for acquired bacitracin resistance in Clostridium perfringens. PLoS One 7:e44449. doi:10.1371/journal.pone.0044449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, Wright GD (2016) A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Commun 7:13803. doi:10.1038/ncomms13803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Azusa Kato, Seigo Nakaya, Yoshitami Ohashi A, Hirata H, and KF, Harada K-I (1997) WAP-8294A2, a novel anti-MRSA antibiotic produced by Lysobacter sp. J Am Chem Soc 119:6680–6681. doi: 10.1021/ja970895o

    Article  CAS  Google Scholar 

  92. Kato A, Nakaya S, Kokubo N, Aiba Y, Ohashi Y, Hirata H, Fujii K, Harada K-I (1998) A new anti-MRSA antibiotic complex, WAP-8294A. J Antibiot 51:929–935. doi:10.7164/antibiotics.51.929

    Article  PubMed  CAS  Google Scholar 

  93. Konishi M, Sugawara K, Hanada M, Tomita K, Tomatsu K, Miyaki T, Kawaguchi H, Buck RE, More C, Rossomano VZ (1984) Empedopeptin (Bmy-28117), a new depsipeptide antibiotic. J Antibiot 37:949–957. doi:10.7164/antibiotics.37.949

    Article  PubMed  CAS  Google Scholar 

  94. Hashizume H, Sawa R, Harada S, Igarashi M, Adachi H, Nishimura Y, Nomoto A (2011) Tripropeptin C blocks the lipid cycle of cell wall biosynthesis by complex formation with undecaprenyl pyrophosphate. Antimicrob Agents Chemother 55:3821–3828. doi:10.1128/AAC.00443-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Shoji J, Hinoo H, Katayama T, Matsumoto K, Tanimoto T, Hattori T, Higashiyama I, Miwa H, Motokawa K, Yoshida T (1992) Isolation and characterization of new peptide antibiotics, plusbacins A1–A4 and B1–B4. J Antibiot 45:817–823. doi:10.7164/antibiotics.45.817

    Article  PubMed  CAS  Google Scholar 

  96. Müller A, Münch D, Schmidt Y, Reder-Christ K, Schiffer G, Bendas G, Gross H, Sahl H-G, Schneider T, Brötz-Oesterhelt H (2012) Lipodepsipeptide empedopeptin inhibits cell wall biosynthesis through Ca2+-dependent complex formation with peptidoglycan precursors. J Biol Chem 287:20270–20280. doi:10.1074/jbc.M112.369561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Cochrane SA, Li X, He S, Yu M, Wu M, Vederas JC (2015) Synthesis of tridecaptin–antibiotic conjugates with in vivo activity against gram-negative bacteria. J Med Chem 58:9779–9785. doi:10.1021/acs.jmedchem.5b01578

    Article  PubMed  CAS  Google Scholar 

  98. Cochrane SA, Findlay B, Bakhtiary A, Acedo JZ, Rodriguez-Lopez EM, Mercier P, Vederas JC (2016) Antimicrobial lipopeptide tridecaptin A1 selectively binds to gram-negative lipid II. Proc Natl Acad Sci U S A 113:11561–11566. doi:10.1073/pnas.1608623113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Boakes S, Dawson MJ (2014) In: Natural products: discourse, diversity, and design. Wiley, Hoboken, NJ, USA, pp 455–468

    Chapter  Google Scholar 

  100. Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl H-G (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    PubMed  PubMed Central  Google Scholar 

  101. Oppedijk SF, Martin NI, Breukink E (2016) Hit ‘em where it hurts: the growing and structurally diverse family of peptides that target lipid-II. Biochim Biophys Acta 1858:947–957. doi:10.1016/j.bbamem.2015.10.024

    Article  PubMed  CAS  Google Scholar 

  102. Breukink E, Wiedemann I, Van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364. doi:10.1126/science.286.5448.2361

    Article  PubMed  CAS  Google Scholar 

  103. Koopmans T, Wood TM, Hart PT, Kleijn LHJ, Hendrickx APA, Willems RJL, Breukink E, Martin NI (2015) Semisynthetic lipopeptides derived from nisin display antibacterial activity and lipid II binding on par with that of the parent compound. J Am Chem Soc 137:9382–9389. doi:10.1021/jacs.5b04501

    Article  PubMed  CAS  Google Scholar 

  104. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. doi:10.1038/nature14098

    Article  PubMed  CAS  Google Scholar 

  105. Ng V, Chan WC (2016) New found hope for antibiotic discovery: lipid II inhibitors. Chem A Eur J 22:12606–12616. doi:10.1002/chem.201601315

    Article  CAS  Google Scholar 

  106. Yang H, Chen KH, Nowick JS (2016) Elucidation of the teixobactin pharmacophore. ACS Chem Biol 11:1823–1826. doi:10.1021/acschembio.6b00295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Dhara S, Gunjal VB, Handore KL, Reddy DS (2016) Solution-phase synthesis of the macrocyclic core of teixobactin. Eur J Org Chem 2016:4289–4293

    Article  CAS  Google Scholar 

  108. Jin K, Sam IH, Po KH, Lin D, Ghazvini Zadeh EH, Chen S, Yuan Y, Li X (2016) Total synthesis of teixobactin. Nat Commun 7:12394. doi:10.1038/ncomms12394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Giltrap AM, Dowman LJ, Nagalingam G, Ochoa JL, Linington RG, Britton WJ, Payne RJ (2016) Total synthesis of teixobactin. Org Lett 18:2788–2791. doi:10.1021/acs.orglett.6b01324

    Article  PubMed  CAS  Google Scholar 

  110. Parmar A, Iyer A, Vincent CS, Van Lysebetten D, Prior SH, Madder A, Taylor EJ, Singh I (2016) Efficient total syntheses and biological activities of two teixobactin analogues. Chem Commun 52:6060–6063. doi:10.1039/c5cc10249a

    Article  CAS  Google Scholar 

Download references

Statement of Clarity

L. H. J. Kleijn and N. I. Martin declare competing financial interests as both authors are co-founders of Karveel Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel I. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Kleijn, L.H.J., Martin, N.I. (2017). The Cyclic Lipopeptide Antibiotics. In: Fisher, J., Mobashery, S., Miller, M. (eds) Antibacterials. Topics in Medicinal Chemistry, vol 26. Springer, Cham. https://doi.org/10.1007/7355_2017_9

Download citation

Publish with us

Policies and ethics