Skip to main content

Degradation of Various Plastics in the Environment

  • Chapter
  • First Online:
Hazardous Chemicals Associated with Plastics in the Marine Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 78))

Abstract

It is very important to understand the interaction between plastics and environment in ambient conditions. The plastics degrade because of this interaction and often their surface properties change resulting in the creation of new functional groups. The plastics after this change continue to interact with the environment and biota. It is a dynamic situation with continuous changing parameters. Polyethylene, polypropylene, and polyethylene terephthalate (PET) degrade through the mechanisms of photo-, thermal, and biodegradation. The three polymers degrade with different rates and different pathways. Under normal conditions, photo- and thermal degradation are similar. For polyethylene, photo-degradation results in sharper peaks in the bands which represent ketones, esters, acids, etc. on their infrared spectrum. The same is true for polypropylene but this polymer is more resistant to photo-degradation. The photo-oxidation of PET involves the formation of hydroperoxide species through oxidation of the CH2 groups adjacent to the ester linkages and the hydroperoxides species involving the formation of photoproducts through several pathways. For the three polymers, interaction with microbes and formation of biofilms are different. Generally, biodegradation results in the decrease of carbonyl indices if the sample has already been photo-degraded by exposure to UV. Studies with environmental samples agree with these findings but the degradation of plastics is very subjective to the local environmental conditions that are usually a combination of those simulated in laboratory conditions. For example, some studies suggested that fragmentation of plastic sheet by solar radiation can occur within months to a couple of years on beaches, whereas PET bottles stay intact over 15 years on sea bottoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364(1526):1985–1998. doi:10.1098/rstb.2008.0205

    Article  CAS  Google Scholar 

  2. Rochman MC, Browne AM, Halpern SB, Hentschel TB, Hoh E, Karapanagioti KH, Rios-Mendoza ML, Takada HS, Teh S, Thompson CT (2013) Classify plastic waste as hazardous. Nature 494:169–171

    CAS  Google Scholar 

  3. Endo S, Takizawa R, Okuda K, Takada H, Chiba K, Kanehiro H, Ogi H, Yamashita R, Date T (2005) Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull 50:1103–1114

    CAS  Google Scholar 

  4. Holmes LA, Turner A, Thompson CR (2014) Interactions between trace metals and plastic production pellets under estuarine conditions. Mar Chem 167:25–32

    CAS  Google Scholar 

  5. Graca B, Beldowska M, Wrzesie P, Zgrundo A (2014) Styrofoam debris as a potential carrier of mercury within ecosystems. Environ Sci Pollut Res 21:2263–2271

    CAS  Google Scholar 

  6. Ioakeimidis C, Zeri C, Kaberi H, Galatchi M, Antoniadis K, Streftaris N, Galgani F, Papathanassiou E, Papatheodorou G (2014) Comparative study of marine litter on the seafloor of coastal areas in the Eastern Mediterranean and Black Seas. Mar Pollut Bull 89:1–2

    Google Scholar 

  7. Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D, Zettler ER, Farrington JW, Reddy CM, Peacock EE, Ward MW (2011) Organic micropollutants in marine plastic debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692

    CAS  Google Scholar 

  8. Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324

    CAS  Google Scholar 

  9. Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S, Endo S, Mato Y, Saha M, Okuda K, Nakashima A, Murakami M, Zurcher N, Booyatumanondo R, Zakaria MP, Dung LQ, Gordon M, Miguez C, Suzuki S, Moore C, Karapanagioti HK, Weerts S, McClurg T, Burres E, Smith W, Velkenburg MV, Lang JS, Lang RC, Laursen D, Danner B, Stewardson N, Thompson RC (2009) International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCB, DDT, and HCHs. Mar Pollut Bull 58:1437–1446

    CAS  Google Scholar 

  10. Rios LM, Moore C, Jones PR (2007) Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull 54:1230–1237

    CAS  Google Scholar 

  11. Taniguchi T, Colabuono FI, Dias PS, Oliveira R, Fisner M, Turra A, Izar GM, Abessa DMS, Saha M, Hosoda J, Yamashita R, Takada H, Lourenço RA, Magalhães CA, Bícego MC, Montone RC (2016) Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil. Mar Pollut Bull 106:87–94

    CAS  Google Scholar 

  12. Pegram AJ, Andrady LA (1989) Outdoor weathering of selected polymeric materials under marine exposure conditions. Polym Degrad Stab 26:333–345

    CAS  Google Scholar 

  13. Karapanagioti HK, Endo S, Ogata Y, Takada H (2011) Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece. Mar Pollut Bull 62:312–317

    CAS  Google Scholar 

  14. Plastics Europe, Association of Plastics Manufacturers (2013) Plastics the facts 2013. Available from http://www.plasticseurope.org/Document/plastics-the-facts-2013.aspx

  15. Smith R (2005) Biodegradable polymers for industrial applications. Woodhead Publishing Limited, Cambridge, Ch. 14.1, p 357

    Google Scholar 

  16. Ranby B (1989) Photodegradation and photo-oxidation of synthetic polymers. J Anal Appl Pyrolysis 15:237–247

    Google Scholar 

  17. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584

    CAS  Google Scholar 

  18. Artham T, Doble M (2008) Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 8(1):14–24

    CAS  Google Scholar 

  19. Swift G (1997) Requirements for biodegradable water-soluble polymers. Polym Degrad Stab 59:19–24

    Google Scholar 

  20. Francois-Heude A, Richard E, Desnoux E, Colin X (2014) Influence of temperature, UV-light wavelength and intensity of polypropylene photo-thermal oxidation. Polym Degrad Stab 100:10–20

    CAS  Google Scholar 

  21. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442

    CAS  Google Scholar 

  22. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    CAS  Google Scholar 

  23. Ammala A, Bateman S, Dean K, Petinakisa E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C, Leong KH (2011) An overview of degradable and biodegradable polyolefins. Prog Polym Sci 36:1015–1049

    CAS  Google Scholar 

  24. Chiellini E, Corti A, D’Antone S, Baciu R (2006) Oxo-biodegradable carbon backbone polymers. Oxidative degradation of polyethylene under accelerated test conditions. Polym Degrad Stab 91:2739–2747

    CAS  Google Scholar 

  25. Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87

    CAS  Google Scholar 

  26. Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104

    CAS  Google Scholar 

  27. Zheng Y, Yanful K, Bassi AS (2005) A review of plastic waste biodegradation. Crit Rev Biotechnol 25:243–250

    CAS  Google Scholar 

  28. Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77:100–106

    CAS  Google Scholar 

  29. Restrepo-Flórez JM, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene. A review. Int Biodeter Biodegr 88:83–90

    Google Scholar 

  30. Cheng S, Dehaye F, Bailly C, Biebuyck JJ, Legras R, Parks L (2005) Studies on polyethylene pellets modified by low dose radiation prior to part formation. Nucl Instrum Methods Phys Res B 236:130–136

    CAS  Google Scholar 

  31. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79:385–397

    CAS  Google Scholar 

  32. Kyrikou I, Briassoulis D, Hiskakis M, Babou E (2011) Analysis of photo-chemical degradation behaviour of polyethylene mulching film with pro-oxidants. Polym Degrad Stab 96:2237–2252

    CAS  Google Scholar 

  33. Muthukumar T, Aravinthan A, Lakshmi K, Venkatesan R, Vedaprakash L, Doble M (2011) Fouling and stability of polymers and composites in marine environment. Int Biodeter Biodegr 65:276–284

    CAS  Google Scholar 

  34. Pastorelli G, Cucci C, Garcia O, Piantanida G, Elnaggar A, Cassar M, Strlic M (2014) Environmentally induced color change during natural degradation of selected polymers. Polym Degrad Stab 107:198–209

    CAS  Google Scholar 

  35. Gardette M, Perthue A, Gardette JL, Janecska T, Foldes E, Pukanszky B, Therias S (2013) Photo and thermal oxidation of polyethylene. Comparison of mechanisms and influence of unsaturated content. Polym Degrad Stab 98:2383–2390

    CAS  Google Scholar 

  36. Carpentieri I, Brunella V, Bracco P, Paganini MC, Del Prever EMB, Luda MP, Bonomi S, Costa L (2011) Post irradiation oxidation of different polyethylenes. Polym Degrad Stab 96:624–629

    CAS  Google Scholar 

  37. Edge M, Hayes M, Mohammadian M, Allen SN, Jewitt ST (1991) Aspects of poly(ethylene terephthalate) degradation on archival life and environmental degradation. Polym Degrad Stab 32:131–153

    CAS  Google Scholar 

  38. Roy PK, Surekha P, Rajagopal C, Chatterjee SN, Choudhary V (2006) Accelerated aging of LDPE films containing cobalt complexes as prooxidants. Polym Degrad Stab 91:1791–1799

    CAS  Google Scholar 

  39. Benitez A, Sanchez JJ, Arnal ML, Muller AJ, Rodriguez O, Morales G (2013) Abiotic degradation of LDPE and LLDPE formulated with pro-oxidant additive. Polym Degrad Stab 98:490–501

    CAS  Google Scholar 

  40. Yang R, Li Y, Yu J (2005) Photo-stabilization of linear low density polyethylene by inorganic nanoparticles. Polym Degrad Stab 88:168–174

    CAS  Google Scholar 

  41. Mendes LC, Rufino ES, De Paula FOC, Torres AC Jr (2002) Mechanical, thermal and microstructure evaluation of HDPE after weathering in Rio de Janeiro city. Polym Degrad Stab 79:371–383

    Google Scholar 

  42. Fotopoulou KN, Karapanagioti HK (2012) Surface properties of beached plastic pellets. Mar Environ Res 81:70–77

    CAS  Google Scholar 

  43. Ojeda T, Freitas A, Birck K, Dalmolin E, Jacques R, Bento F, Camargo F (2011) Degradability of linear polyolefins under natural weathering. Polym Degrad Stab 96:703–707

    CAS  Google Scholar 

  44. Satoto R, Subowo WS, Yusiasih R, Takane Y, Watanabe Y, Hatakeyama T (1997) Weathering of high-denstity polyethylene in different latitudes. Polym Degrad Stab 56:275–279

    CAS  Google Scholar 

  45. Mincer TJ, Zettler ER, Amaral-Zettler LA (2016) Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility. In: Takada H, Karapanagioti HK (eds) Hazardous chemicals associated with plastics in the marine environment, The handbook of environmental chemistry. Springer. doi:10.1007/698_2016_12

  46. Krupp RL, Jewell JW (1992) Biodegradability of modified plastic films in controlled biological environments. Environ Sci Tech 26:193–198

    CAS  Google Scholar 

  47. Albertsson AC, Barenstedt C, Karlsson S (1994) Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym 45:97–103

    CAS  Google Scholar 

  48. Bikiaris DN, Karayannidis GP (1999) Effect of carboxylic end groups on thermooxidative stability of PET and PBT. Polym Degrad Stab 63:213–218

    CAS  Google Scholar 

  49. Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G (2003) Environmental degradation of polyethylene. Polym Degrad Stab 81:441–452

    CAS  Google Scholar 

  50. Sudhakar M, Doble M, Sriyutha Murthy P, Venkatesan R (2008) Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int Biodeter Biodegr 61:203–213

    CAS  Google Scholar 

  51. Nowak B, Pajak J, Drozd-Bratkowicz M, Rymarz G (2011) Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeter Biodegr 65:757–767

    CAS  Google Scholar 

  52. Orhan Y, Buyukgungor H (2000) Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int Biodeter Biodegr 45:49–55

    CAS  Google Scholar 

  53. Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Pollut Res 20:4146–4153

    CAS  Google Scholar 

  54. Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62:197–200

    CAS  Google Scholar 

  55. Artham T, Sudhakar M, Venkatesan R, Madhavan Nair C, Murty KVGK, Doble M (2009) Biofouling and stability of synthetic polymers in sea water. Int Biodeter Biodegr 63:884–890

    CAS  Google Scholar 

  56. Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault JP, Pitteri S, Samuel G, Pichon G, Lemaire G, Delort AM (2010) Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab 95:1011–1021

    CAS  Google Scholar 

  57. Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100

    CAS  Google Scholar 

  58. Donlan MR (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Google Scholar 

  59. Wanasekara N, Chalivendra V, Calvert P (2011) Sub-micron scale mechanical properties of polypropylene fibers exposed to ultraviolet and thermal degradation. Polym Degrad Stab 96:432–437

    CAS  Google Scholar 

  60. Zhao H, Li KYR (2006) A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer 47:3207–3217

    CAS  Google Scholar 

  61. Yang X, Ding X (2006) Prediction of outdoor weathering performance of polypropylene filaments by accelerated weathering tests. Geotext Geomembranes 24:103–109

    Google Scholar 

  62. Lv Y, Huang Y, Yang J, Kong M, Yang H, Zhao J, Li G (2015) Outdoor and accelerated laboratory weathering of polypropylene: a comparison and correlation study. Polym Degrad Stab 112:145–159

    CAS  Google Scholar 

  63. Yano A, Akai N, Ishii H, Satoh C, Hironiwa T, Millington KR, Nakata M (2013) Thermal oxidative degradation of additive-free polypropylene pellets investigated by multichannel Fourier-transform chemiluminescence spectroscopy. Polym Degrad Stab 98:2680–2686

    CAS  Google Scholar 

  64. Song D, Gao J, Li X, Lu L (2014) Evaluation of aging behavior of polypropylene in natural environment by principal component analysis. Polym Test 33:131–137

    CAS  Google Scholar 

  65. Bajer K, Braun U (2014) Different aspects of the accelerated oxidation of polypropylene at increased pressure in an autoclave with regard to temperature, pretreatment exposure media. Polym Test 37:102–111

    CAS  Google Scholar 

  66. Li J, Yang R, Yu J, Liu Y (2008) Natural photo-aging degradation of polypropylene nanocomposites. Polym Degrad Stab 93:84–89

    CAS  Google Scholar 

  67. Zhenfeng Z, Xingzhou H, Zubob L (1996) Wavelength sensitivity of photooxidation of polypropylene. Polym Degrad Stab 51:93–97

    Google Scholar 

  68. Arkatkar A, Arutchelvi J, Bhaduri S, Veera Uppara P, Doble M (2009) Degradation of unpretreated and thermally pretreated by soil consortia. Int Biodeter Biodegr 63:106–111

    CAS  Google Scholar 

  69. Singhania RR, Christophe G, Perchet G, Troquet J, Larroche C (2012) Immersed membrane bioreactors: an overview with special emphasis on anaerobic bioprocesses. Bioresour Technol 122:171–180

    CAS  Google Scholar 

  70. Jeyakumar D, Chirsteen J, Doble M (2013) Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour Technol 148:78–85

    CAS  Google Scholar 

  71. Ramis X, Cadenato A, Salla JM, Morancho JM, Valles A, Contat L, Ribes A (2004) Thermal degradation of polypropylene starch-based materials with enhanced biodegradability. Polym Degrad Stab 86:483–491

    CAS  Google Scholar 

  72. Arkatkar A, Juwarkar AA, Bhaduri S, Veera Uppara P, Doble M (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeter Biodegr 64:530–536

    CAS  Google Scholar 

  73. Fontanella S, Bonhomme S, Brusson JM, Pitteri S, Samuel G, Pichon G, Lacoste J, Fromageot D, Lemaire G, Delort AM (2013) Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polym Degrad Stab 98:875–884

    CAS  Google Scholar 

  74. Miyazaki M, Arai T, Shibata K, Terano M, Nakatani H (2012) Study on biodegradation mechanism of novel oxo-biodegradable polypropylenes in an aqueous medium. Polym Degrad Stab 97:2177–2184

    CAS  Google Scholar 

  75. Kint PRD, Martınez de Ilarduya A, Munoz-Guerra S (2003) Hydrolytic degradation of poly(ethylene terephthalate) copolymers containing nitrated units. Polym Degrad Stab 79:353–358

    CAS  Google Scholar 

  76. Eubeler JP, Bernhard M, Knepper TP (2010) Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. Trends Anal Chem 29:1

    Google Scholar 

  77. Mueller JR (2006) Biological degradation of synthetic polyesters – enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128

    CAS  Google Scholar 

  78. Botelho G, Queiros A, Liberal S, Gijsman P (2001) Studies on thermal and thermo-oxidative degradation of poly(ethylene terephthalate) and poly(butylene terephthalate). Polym Degrad Stab 74:39–48

    CAS  Google Scholar 

  79. Webb KH, Arnott J, Crawford JR, Ivanova PE (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 5:1–18

    Google Scholar 

  80. Venkatachalam S, Nayak GS, Labde VJ, Gharal RP, Rao K, Kelkar KA (2012) Degradation and recyclability of poly (ethylene terephthalate). In: Saleh HEDM (ed.) Chapter 4, polyester, InTech, ISBN: 978-953-51-0770-5, doi:10.5772/48612

  81. Müller JR, Kleeberg I, Deckwer WD (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95

    Google Scholar 

  82. Fagerburg DR, Clauberg H (2003) Photodegradation of poly(ethylene terephthalate) and poly (ethylene/1,4 cyclhexylenedimethylene terephthalate). Chapter 18 In: Scheirs J, Long TE (eds) Modern polyesters, chemistry and technology of polyesters and copolyester. John Wiley & Sons, p 609

    Google Scholar 

  83. Lee OK, Chae B, Kim BS, Jung MJ, Lee WS (2012) Two-dimensional correlation analysis study of the photo-degradation of poly(ethylene terephthalate) film. Vib Spectrosc 60:142–145

    CAS  Google Scholar 

  84. Djebara M, Stoquert JP, Abdesselam M, Muller D, Chami AC (2012) FTIR analysis of polyethylene terephthalate irradiated by MeV He+. Nucl Instrum Methods Phys Res B 274:70–77

    CAS  Google Scholar 

  85. Sammon C, Yarwood J, Everall N (2000) An FT-IR study of the effect of hydrolytic degradation on the structure of thin PET films. Polym Degrad Stab 67:149–158

    CAS  Google Scholar 

  86. Gregory MR (1983) Virgen plastic granules on some beaches of eastern Canada and Bermuda. Mar Environ Res 10:73–92

    Google Scholar 

  87. Orhan Y, Hrenovic J, Buyukgungor H (2004) Biodegradation of plastic compost bags under controlled soil conditions. Int Biodeter Biodegr 45:49–55

    Google Scholar 

  88. Basfar AA, Idriss Ali KM (2006) Natural weathering test for films of various formulations of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE). Polym Degrad Stab 91:437–443

    CAS  Google Scholar 

  89. Fotopoulou KN, Karapanagioti HK (2015) Surface properties of beached plastics. Environ Sci Pollut Res 22:11022–11032

    CAS  Google Scholar 

  90. Ioakeimidis C, Fotopoulou KN, Karapanagioti HK, Geraga M, Zeri C, Papathanassiou E, Galgani F, Papatheodorou G (2016) The degradation potential of PET bottles in the marine environment: an ATR-FTIR based approach. Sci Rep 6:1–8. Publisher’s official version: http://doi.org/10.1038/srep23501

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalliopi N. Fotopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fotopoulou, K.N., Karapanagioti, H.K. (2017). Degradation of Various Plastics in the Environment. In: Takada, H., Karapanagioti, H.K. (eds) Hazardous Chemicals Associated with Plastics in the Marine Environment. The Handbook of Environmental Chemistry, vol 78. Springer, Cham. https://doi.org/10.1007/698_2017_11

Download citation

Publish with us

Policies and ethics