Skip to main content

Stem Cell Therapy and Type 1 Diabetes Mellitus: Treatment Strategies and Future Perspectives

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1084))

Abstract

Type 1 diabetes mellitus (T1DM) is classified as an autoimmune disease which progressively results in the depletion of insulin-secreting β-cells. Consequently, the insulin secretion stops leading to hyperglycemic situations within the body. Under severe conditions, it also causes multi-organ diabetes-associated dysfunctionalities notably hypercoagulability, neuropathy, nephropathy, retinopathy, and sometimes organ failures. The prevalence of this disease has been noticed about 3% that has highlighted the serious concerns for healthcare professionals around the globe. For the treatment of this disease, the cell therapy is considered as an important therapeutic approach for the replacement of damaged β-cells. However, the development of autoantibodies unfortunately reduces their effectiveness with the passage of time and finally with the recurrence of diabetes mellitus. The development of new techniques for extraction and transplantation of islets failed to support this approach due to the issues related to major surgery and lifelong dependence on immunosuppression. For T1DM, such cells are supposed to produce, store, and supply insulin to maintain glucose homeostasis. The urgent need of much-anticipated substitute for insulin-secreting β-cells directed the researchers to focus on stem cells (SCs) to produce insulin-secreting β-cells. For being more specific and targeted therapeutic approaches, SC-based strategies opened up the new horizons to cure T1DM. This cell-based therapy aimed to produce functional insulin-secreting β-cells to cure diabetes on forever basis. The intrinsic regenerative potential along with immunomodulatory abilities of SCs highlights the therapeutic potential of SC-based strategies. In this article, we have comprehensively highlighted the role of SCs to treat diabetes mellitus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CPPs:

Cell-penetrating peptides

ESCs:

Embryonic stem cells

HSCs:

Hematopoietic stem cells

HSV:

Herpes simplex virus

iPSCs:

Induced pluripotent stem cells

ISC:

Insulin-secreting cells

MSCs:

Mesenchymal stromal cells

PTDs:

Protein transduction domains

r-ATG:

Rabbit anti-thymoglobulin

SCs:

Stem cells

SCT:

Stem cell therapy

T1DM:

Type 1 diabetes mellitus

TAT:

Trans-activator of transcription

UCB:

Umbilical cord blood

WHO:

World Health Organization

References

Download references

Conflict of Interest

Nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanwal Rehman or Muhammad Sajid Hamid Akash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Farooq, T., Rehman, K., Hameed, A., Akash, M.S.H. (2018). Stem Cell Therapy and Type 1 Diabetes Mellitus: Treatment Strategies and Future Perspectives. In: Pham, P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology(), vol 1084. Springer, Cham. https://doi.org/10.1007/5584_2018_195

Download citation

Publish with us

Policies and ethics