Skip to main content

Intravenous Infusion of Human Adipose Tissue-Derived Mesenchymal Stem Cells to Treat Type 1 Diabetic Mellitus in Mice: An Evaluation of Grafted Cell Doses

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1083))

Abstract

Mesenchymal stem cell (MSC) transplantation is a novel treatment for diabetes mellitus, especially type 1 diabetes. Many recent publications have demonstrated the efficacy of MSC transplantation on reducing blood glucose and increasing insulin production in both preclinical and clinical trials. However, the investigation of grafted cell doses has been lacking. Therefore, this study aimed to evaluate the different doses of MSCs on treatment of type 1 diabetes in mouse models. MSCs were isolated and expanded from human adipose tissue. Streptozotocin (STZ)-induced diabetic mice were divided into two groups that were intravenously transfused with two different doses of human MSCs: 106 or 2.106 cells/mouse. After transplantation, both grafted and placebo mice were monitored weekly for their blood glucose levels, glucose and insulin tolerance, pancreatic structural changes, and insulin production for 56 days after transplantation. The results showed that the higher dose of MSCs (2.106 cells/mouse) remarkably reduced death rate. The death rates were 50%, 66%, and 0% in placebo group, low-dose (1.106 MSCs) group, and high-dose (2.106 MSCs) group, respectively, after 56 days of treatment. Moreover, blood glucose levels were lower for the high-dose group compared to other groups. Glucose and insulin tolerance, as well as insulin production, were significantly improved in mice transplanted with 2.106 cells. The histochemical analyses also support these results. Thus, a higher (e.g., 2.106) dose of MSCs may be an effective dose for treatment of type 1 diabetes mellitus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

hADSCs:

Human adipose-derived stem cells

GTT:

Glucose tolerance test

H&E:

Hematoxylin and eosin

MSCs:

Mesenchymal stem cells

STZ:

Streptozotocin

Th1/Th2:

T helper 1/T helper 2

TNF-α:

Tumor necrosis factor-alpha

IL-10:

Interleukin-10

IL-12:

Interleukin-12

IFN-γ:

Interferon-gamma

EGF:

Epidermal growth factor

bFGF:

Basic fibroblast growth factor

PDGF:

Platelet-derived growth factor

TGF-β:

Transforming growth factor-beta

VEGF:

Vascular endothelial growth factor

HGF:

Hepatocyte growth factor

IGF:

Insulin growth factor-1

NO:

Nitric oxide

PGE2:

Prostaglandin E2

IDO:

Indoleamine 2,3-dioxygenase

References

  • Aghazadeh, Y., & Nostro, M. C. (2017). Cell therapy for type 1 diabetes: Current and future strategies. Current Diabetes Reports, 17, 37.

    Article  PubMed  CAS  Google Scholar 

  • Atoui, R., & Chiu, R. C. (2012). Concise review: Immunomodulatory properties of mesenchymal stem cells in cellular transplantation: Update, controversies, and unknowns. Stem Cells Translational Medicine, 1, 200–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, G. I., Broughton, H. C., Levac, K. D., Allan, D. A., Xenocostas, A., & Hess, D. A. (2012a). Transplanted human bone marrow progenitor subtypes stimulate endogenous islet regeneration and revascularization. Stem Cells and Development, 21, 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Bell, G. I., Meschino, M. T., Hughes-Large, J. M., Broughton, H. C., Xenocostas, A., & Hess, D. A. (2012b). Combinatorial human progenitor cell transplantation optimizes islet regeneration through secretion of paracrine factors. Stem Cells and Development, 21, 1863–1876.

    Article  CAS  PubMed  Google Scholar 

  • Bhansali, S., Dutta, P., Kumar, V., Yadav, M. K., Jain, A., Mudaliar, S., Bhansali, S., Sharma, R. R., Jha, V., Marwaha, N., et al. (2017). Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: A randomized, placebo-controlled comparative study. Stem Cells and Development, 26, 471–481.

    Article  CAS  PubMed  Google Scholar 

  • Cantu-Rodriguez, O. G., Lavalle-Gonzalez, F., Herrera-Rojas, M. A., Jaime-Perez, J. C., Hawing-Zarate, J. A., Gutierrez-Aguirre, C. H., Mancias-Guerra, C., Gonzalez-Llano, O., Zapata-Garrido, A., Villarreal-Perez, J. Z., et al. (2016). Long-term insulin independence in type 1 diabetes mellitus using a simplified autologous stem cell transplant. The Journal of Clinical Endocrinology and Metabolism, 101, 2141–2148.

    Article  CAS  PubMed  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  Google Scholar 

  • Ezquer, F., Ezquer, M., Contador, D., Ricca, M., Simon, V., & Conget, P. (2012). The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells, 30, 1664–1674.

    Article  CAS  PubMed  Google Scholar 

  • Gabr, M. M., Zakaria, M. M., Refaie, A. F., Ismail, A. M., Abou-El-Mahasen, M. A., Ashamallah, S. A., Khater, S. M., El-Halawani, S. M., Ibrahim, R. Y., Uin, G. S., et al. (2013). Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplantation, 22, 133–145.

    Article  PubMed  Google Scholar 

  • Gao, F., Chiu, S. M., Motan, D. A., Zhang, Z., Chen, L., Ji, H. L., Tse, H. F., Fu, Q. L., & Lian, Q. (2016). Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death & Disease, 7, e2062.

    Article  CAS  Google Scholar 

  • Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103, 137–149.

    Article  CAS  PubMed  Google Scholar 

  • Ho, J. H., Tseng, T. C., Ma, W. H., Ong, W. K., Chen, Y. F., Chen, M. H., Lin, M. W., Hong, C. Y., & Lee, O. K. (2012). Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and beta-cell differentiation in streptozocin-induced diabetic mice. Cell Transplantation, 21, 997–1009.

    Article  PubMed  Google Scholar 

  • Hu, J., Wang, Y., Wang, F., Wang, L., Yu, X., Sun, R., Wang, Z., Wang, L., Gao, H., Fu, Z., et al. (2015). Effect and mechanisms of human Wharton’s jelly-derived mesenchymal stem cells on type 1 diabetes in NOD model. Endocrine, 48, 124–134.

    Article  CAS  PubMed  Google Scholar 

  • Kadam, S. S., & Bhonde, R. R. (2010). Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells. Islets, 2, 112–120.

    Article  PubMed  Google Scholar 

  • Kao, S. Y., Shyu, J. F., Wang, H. S., Lin, C. H., Su, C. H., Chen, T. H., Weng, Z. C., & Tsai, P. J. (2015). Comparisons of differentiation potential in human mesenchymal stem cells from Wharton’s jelly, bone marrow, and pancreatic tissues. Stem Cells International, 2015, 306158.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karnieli, O., Izhar-Prato, Y., Bulvik, S., & Efrat, S. (2007). Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells, 25, 2837–2844.

    Article  CAS  PubMed  Google Scholar 

  • Kono, T. M., Sims, E. K., Moss, D. R., Yamamoto, W., Ahn, G., Diamond, J., Tong, X., Day, K. H., Territo, P. R., Hanenberg, H., et al. (2014). Human adipose-derived stromal/stem cells protect against STZ-induced hyperglycemia: Analysis of hASC-derived paracrine effectors. Stem Cells, 32, 1831–1842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, R. H., Seo, M. J., Reger, R. L., Spees, J. L., Pulin, A. A., Olson, S. D., & Prockop, D. J. (2006). Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 17438–17443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Shen, S., Ouyang, J., Hu, Y., Hu, L., Cui, W., Zhang, N., Zhuge, Y. Z., Chen, B., Xu, J., et al. (2012). Autologous hematopoietic stem cell transplantation modulates immunocompetent cells and improves beta-cell function in Chinese patients with new onset of type 1 diabetes. The Journal of Clinical Endocrinology and Metabolism, 97, 1729–1736.

    Article  CAS  PubMed  Google Scholar 

  • Ma, O. K., & Chan, K. H. (2016). Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes. World Journal of Stem Cells, 8, 268–278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marappagounder, D., Somasundaram, I., Dorairaj, S., & Sankaran, R. J. (2013). Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cellular & Molecular Biology Letters, 18, 75–88.

    Article  CAS  Google Scholar 

  • Meyerrose, T. E., De Ugarte, D. A., Hofling, A. A., Herrbrich, P. E., Cordonnier, T. D., Shultz, L. D., Eagon, J. C., Wirthlin, L., Sands, M. S., Hedrick, M. A., et al. (2007). In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells, 25, 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi Ayenehdeh, J., Niknam, B., Rasouli, S., Hashemi, S. M., Rahavi, H., Rezaei, N., Soleimani, M., Liaeiha, A., Niknam, M. H., & Tajik, N. (2017). Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes. Immunology Letters, 188, 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Moshtagh, P. R., Emami, S. H., & Sharifi, A. M. (2013). Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: An in vitro study. Journal of Physiology and Biochemistry, 69, 451–458.

    Article  CAS  PubMed  Google Scholar 

  • Nagaishi, K., Mizue, Y., Chikenji, T., Otani, M., Nakano, M., Konari, N., & Fujimiya, M. (2016). Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Scientific Reports, 6, 34842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okura, H., Komoda, H., Fumimoto, Y., Lee, C. M., Nishida, T., Sawa, Y., & Matsuyama, A. (2009). Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. Journal of Artificial Organs, 12, 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Pham, V. P., Vu, B. N., Phan, L. C. N., Le, M. D., Truong, C. N., Truong, H. N., Bui, H. T. K., & Phan, K. N. (2014). Good manufacturing practice-compliant isolation and culture of human adipose-derived stem cells. Biomedical Research and Therapy, 1, 133–141.

    Google Scholar 

  • Rahavi, H., Hashemi, S. M., Soleimani, M., Mohammadi, J., & Tajik, N. (2015). Adipose tissue-derived mesenchymal stem cells exert in vitro immunomodulatory and beta cell protective functions in streptozotocin-induced diabetic mice model. Journal of Diabetes Research, 2015, 878535.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Seyedi, F., Farsinejad, A., Nematollahi-Mahani, S. A., Eslaminejad, T., & Nematollahi-Mahani, S. N. (2016). Suspension culture alters insulin secretion in induced human umbilical cord matrix-derived mesenchymal cells. Cell Journal, 18, 52–61.

    PubMed  PubMed Central  Google Scholar 

  • Sood, V., Bhansali, A., Mittal, B. R., Singh, B., Marwaha, N., Jain, A., & Khandelwal, N. (2017). Autologous bone marrow derived stem cell therapy in patients with type 2 diabetes mellitus – defining adequate administration methods. World Journal of Diabetes, 8, 381–389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sordi, V., Melzi, R., Mercalli, A., Formicola, R., Doglioni, C., Tiboni, F., Ferrari, G., Nano, R., Chwalek, K., Lammert, E., et al. (2010). Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells, 28, 140–151.

    Article  CAS  PubMed  Google Scholar 

  • Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111, 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  • Thi-Tung Dang, L., Nguyen-Tu Bui, A., Minh Pham, V., Kim Phan, N., & Van Pham, P. (2015). Production of islet-like insulin-producing cell clusters in vitro from adipose derived stem cells. Biomedical Research and Therapy, 2, 184–192.

    Google Scholar 

  • Tsai, P. J., Wang, H. S., Lin, G. J., Chou, S. C., Chu, T. H., Chuan, W. T., Lu, Y. J., Weng, Z. C., Su, C. H., Hsieh, P. S., et al. (2015). Undifferentiated Wharton’s jelly mesenchymal stem cell transplantation induces insulin-producing cell differentiation and suppression of T-cell-mediated autoimmunity in nonobese diabetic mice. Cell Transplantation, 24, 1555–1570.

    Article  PubMed  Google Scholar 

  • Van Pham, P., Thi-My Nguyen, P., Thai-Quynh Nguyen, A., Minh Pham, V., Nguyen-Tu Bui, A., Thi-Tung Dang, L., Gia Nguyen, K., & Kim Phan, N. (2014). Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. Differentiation, 87, 200–208.

    Article  CAS  PubMed  Google Scholar 

  • Wehbe, T., Chahine, N. A., Sissi, S., Abou-Joaude, I., & Chalhoub, L. (2016). Bone marrow derived stem cell therapy for type 2 diabetes mellitus. Stem Cell Investigation, 3, 87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yaochite, J. N., de Lima, K. W., Caliari-Oliveira, C., Palma, P. V., Couri, C. E., Simoes, B. P., Covas, D. T., Voltarelli, J. C., Oliveira, M. C., Donadi, E. A., et al. (2016). Multipotent mesenchymal stromal cells from patients with newly diagnosed type 1 diabetes mellitus exhibit preserved in vitro and in vivo immunomodulatory properties. Stem Cell Research & Therapy, 7, 14.

    Article  CAS  Google Scholar 

  • Ye, L., Li, L., Wan, B., Yang, M., Hong, J., Gu, W., Wang, W., & Ning, G. (2017). Immune response after autologous hematopoietic stem cell transplantation in type 1 diabetes mellitus. Stem Cell Research & Therapy, 8, 90.

    Article  CAS  Google Scholar 

  • Youssef, A., Aboalola, D., & Han, V. K. (2017). The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells International, 2017, 9453108.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Hu, Q., Chen, F., Zhang, J., Guo, J., Wang, H., Gu, J., Ma, L., & Ho, G. (2015). Human umbilical cord matrix-derived stem cells exert trophic effects on beta-cell survival in diabetic rats and isolated islets. Disease Models & Mechanisms, 8, 1625–1633.

    Article  CAS  Google Scholar 

  • Zhou, J. Y., Zhang, Z., & Qian, G. S. (2016). Mesenchymal stem cells to treat diabetic neuropathy: A long and strenuous way from bench to the clinic. Cell Death Discovery, 2, 16055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This research was funded by the Ministry of Science and Technology via project Grant No. DTDL.2012-G/23 and Vietnam National University, Ho Chi Minh City, via project No. C2016-18-18.

Author Contribution

LTTD, designed the study, performed the experiments, analyzed the data, and drafted the manuscript; PVP, KDT, designed the study and reviewed and corrected the manuscript; ANTB, CLTN, performed the experiments and analyzed the data and drafted the manuscript; NCT, ATVB, performed the experiments and reviewed and drafted the manuscript; and NPK analyzed the data and wrote the manuscript.

Competing Interests

The authors declare that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Van Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dang, L.TT. et al. (2017). Intravenous Infusion of Human Adipose Tissue-Derived Mesenchymal Stem Cells to Treat Type 1 Diabetic Mellitus in Mice: An Evaluation of Grafted Cell Doses. In: Van Pham, P. (eds) Stem Cells: Biology and Engineering. Advances in Experimental Medicine and Biology(), vol 1083. Springer, Cham. https://doi.org/10.1007/5584_2017_127

Download citation

Publish with us

Policies and ethics