Skip to main content

Graphene-Based Electrochemical Sensors

  • Chapter
  • First Online:
Carbon-Based Nanosensor Technology

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 17))

Abstract

Since graphene was isolated and characterised in 2004 and 2005, its applications have been researched intensively for a broad range of applications, none more so than the field of electrochemical sensors, which aim to exploit the unique charge carrier mobility associated with graphene structures. This chapter explores graphene and its incorporation into electrochemical sensors. The chapter discusses graphene structure and the electrochemical responses arising from such structures on a macro-scale and examines production methods of graphene and how these affect the observed currents in electrochemical reactions as a result of such methods. The chapter subsequently explores sensors designed from a range of different graphenes, including surfactant-exfoliated graphene, surfactant-free graphene, chemical vapour deposition graphene, and reduced graphene oxide. The chapter finds that reduced graphene oxide is the most commonly employed route for graphene-based electrochemical sensors, owing to the scale of production being large, and its relatively cheap and straightforward production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is especially true in the cases of redox probes such as potassium ferricyanide that are well known to exhibit inner-sphere electron transitions that require a reorganisation of the molecular orbital symmetry for electron transfer to take place. This is not the case for outer-sphere redox probes such as hexamine-ruthenium (III) chloride, however, as they can donate electrons without the need for such reorganisation.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976

    Article  CAS  PubMed  Google Scholar 

  4. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  5. Brownson DAC, Munro LJ, Kampouris DK, Banks CE (2011) Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv 1:978–988

    Article  CAS  Google Scholar 

  6. Brownson DAC, Banks CE (2011) CVD graphene electrochemistry: the role of graphitic islands. Phys Chem Chem Phys 13:15825–15828

    Article  CAS  PubMed  Google Scholar 

  7. Brownson DAC, Banks CE (2014) The handbook of graphene electrochemistry. Springer, London

    Book  Google Scholar 

  8. Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S (2014) Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew Chem Int Ed 53:10804–10808

    Article  CAS  Google Scholar 

  9. Toth PS, Valota AT, Velicky M, Kinloch IA, Novoselov KS, Hill EW, Dryfe RAW (2014) Electrochemistry in a drop: a study of the electrochemical behaviour of mechanically exfoliated graphene on photoresist coated silicon substrate. Chem Sci 5:582–589

    Article  CAS  Google Scholar 

  10. Velický M, Bradley DF, Cooper AJ, Hill EW, Kinloch IA, Mishchenko A, Novoselov KS, Patten HV, Toth PS, Valota AT, Worrall SD, Dryfe RAW (2014) Electron transfer kinetics on mono- and multilayer graphene. ACS Nano 8:10089–10100

    Article  PubMed  Google Scholar 

  11. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  CAS  PubMed  Google Scholar 

  12. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  CAS  PubMed  Google Scholar 

  13. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, Mcevoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630

    Article  CAS  PubMed  Google Scholar 

  14. Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  PubMed  Google Scholar 

  15. Knieke C, Berger A, Voigt M, Taylor RNK, RÖhrl J, Peukert W (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48:3196–3204

    Article  CAS  Google Scholar 

  16. Goh M, Pumera M (2011) Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Anal Bioanal Chem 399:127–131

    Article  CAS  PubMed  Google Scholar 

  17. Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 7:829–841

    Article  Google Scholar 

  18. Yuan W, Zhou Y, Li Y, Li C, Peng H, Zhang J, Liu Z, Dai L, Shi G (2013) The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci Rep 3:2248

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kampouris DK, Banks CE (2010) Exploring the physicoelectrochemical properties of graphene. Chem Commun 46:8986–8988

    Article  CAS  Google Scholar 

  20. Lavagnini I, Antiochia R, Magno F (2004) An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 16:505–506

    Article  CAS  Google Scholar 

  21. Brownson DAC, Banks CE (2011) Graphene electrochemistry: surfactants inherent to graphene inhibit metal analysis. Electrochem Commun 13:111–113

    Article  CAS  Google Scholar 

  22. Brownson DAC, Banks CE (2012) Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties. Chem Commun 48:1425–1427

    Article  CAS  Google Scholar 

  23. Li W, Tan C, Lowe MA, Abruña HD, Ralph DC (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5:2264–2270

    Article  CAS  PubMed  Google Scholar 

  24. Chen R, Nioradze N, Santhosh P, Li Z, Surwade SP, Shenoy GJ, Parobek DG, Kim MA, Liu H, Amemiya S (2015) Ultrafast electron transfer kinetics of graphene grown by chemical vapor deposition. Angew Chem Int Ed 54:15134–15137

    Article  CAS  Google Scholar 

  25. Lim CX, Hoh HY, Ang PK, Loh KP (2010) Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal Chem 82:7387–7393

    Article  CAS  PubMed  Google Scholar 

  26. Li K, Jiang J, Dong Z, Luo H, Qu L (2015) A linear graphene edge nanoelectrode. Chem Commun 51:8765–8768

    Article  CAS  Google Scholar 

  27. Poh HL, Sanek F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4:3515–3522

    Article  CAS  PubMed  Google Scholar 

  28. Mazaheri M, Aashuri H, Simchi A (2017) Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sensors Actuators B Chem 251:462–471

    Article  CAS  Google Scholar 

  29. Güell AG, Cuharuc AS, Kim Y-R, Zhang G, Tan S-Y, Ebejer N, Unwin PR (2015) Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS Nano 9:3558–3571

    Article  PubMed  Google Scholar 

  30. Brownson DAC, Lacombe AC, Kampouris DK, Banks CE (2012) Graphene electroanalysis: inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene. Analyst 137:420–423

    Article  CAS  PubMed  Google Scholar 

  31. Randviir EP, Banks CE (2012) Electrochemical measurement of the DNA bases adenine and guanine at surfactant-free graphene modified electrodes. RSC Adv 2:5800–5805

    Article  CAS  Google Scholar 

  32. Brownson DAC, Banks CE (2012) The electrochemistry of CVD graphene: progress and prospects. Phys Chem Chem Phys 14:8264–8281

    Article  CAS  PubMed  Google Scholar 

  33. Brownson DAC, Gomez-Mingot M, Banks CE (2011) CVD graphene electrochemistry: biologically relevant molecules. Phys Chem Chem Phys 13:20284–20288

    Article  CAS  PubMed  Google Scholar 

  34. Keeley GP, Mcevoy N, Nolan H, Holzinger M, Cosnier S, Duesberg GS (2014) Electroanalytical sensing properties of pristine and functionalized multilayer graphene. Chem Mater 26:1807–1812

    Article  CAS  Google Scholar 

  35. Salmi Z, Koefoed L, Jensen BBE, Čabo AG, Hofmann P, Pedersen SU, Daasbjerg K (2016) Electroinduced intercalation of tetraalkylammonium ions at the interface of graphene grown on copper, platinum, and iridium. ChemElectroChem 3:2202–2211

    Article  CAS  Google Scholar 

  36. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  PubMed  Google Scholar 

  37. Randviir EP, Brownson DAC, Gomez-Mingot M, Kampouris DK, Iniesta J, Banks CE (2012) Electrochemistry of Q-graphene. Nanoscale 4:6470–6480

    Article  CAS  PubMed  Google Scholar 

  38. Hadish F, Jou S, Huang B-R, Kuo H-A, Tu C-W (2017) Functionalization of CVD grown graphene with downstream oxygen plasma treatment for glucose sensors. J Electrochem Soc 164:B336–B341

    Article  CAS  Google Scholar 

  39. Jiang J, Zhang P, Liu Y, Luo H (2017) A novel non-enzymatic glucose sensor based on a Cu-nanoparticle-modified graphene edge nanoelectrode. Anal Methods 9:2205–2210

    Article  CAS  Google Scholar 

  40. Liu L, Qi W, Gao X, Wang C, Wang G (2018) Synergistic effect of metal ion additives on graphitic carbon nitride nanosheet-templated electrodeposition of Cu@CuO for enzyme-free glucose detection. J Alloys Compd 745:155–163

    Article  CAS  Google Scholar 

  41. Song H, Li X, Cui P, Guo S, Liu W, Wang X (2017) Sensitivity investigation for the dependence of monolayer and stacking graphene NH3 gas sensor. Diam Relat Mater 73:56–61

    Article  CAS  Google Scholar 

  42. Feng X, Irle S, Witek H, Morokuma K, Vidic R, Borguet E (2005) Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. J Am Chem Soc 127:10533–10538

    Article  CAS  PubMed  Google Scholar 

  43. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    Article  CAS  PubMed  Google Scholar 

  44. Moo JGS, Khezri B, Webster RD, Pumera M (2014) Graphene oxides prepared by Hummers’, Hofmann’s, and Staudenmaier’s methods: dramatic influences on heavy-metal-ion adsorption. ChemPhysChem 15:2922–2929

    Article  CAS  PubMed  Google Scholar 

  45. Ong BK, Poh HL, Chua CK, Pumera M (2012) Graphenes prepared by Hummers, Staudenmaier and Hofmann methods for analysis of TNT-based nitroaromatic explosives in seawater. Electroanalysis 24:2085–2093

    Article  CAS  Google Scholar 

  46. Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown CL, Yao X (2016) Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 28:9532–9538

    Article  CAS  PubMed  Google Scholar 

  47. Hui KH, Ambrosi A, Pumera M, Bonanni A (2016) Improving the analytical performance of graphene oxide towards the assessment of polyphenols. Chem Eur J 22:3830–3834

    Article  CAS  PubMed  Google Scholar 

  48. Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5:6955–6961

    Article  CAS  PubMed  Google Scholar 

  49. Chung MG, Kim D-H, Seo DK, Kim T, Im HU, Lee HM, Yoo J-B, Hong S-H, Kang TJ, Kim YH (2012) Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sensors Actuators B Chem 169:387–392

    Article  CAS  Google Scholar 

  50. Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968

    Article  CAS  PubMed  Google Scholar 

  51. Gong J, Zhou T, Song D, Zhang L (2010) Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sensors Actuators B Chem 150:491–497

    Article  CAS  Google Scholar 

  52. Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    Article  CAS  Google Scholar 

  53. Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527

    Article  CAS  Google Scholar 

  54. Xu C, Wang X, Zhu J (2008) Graphene−metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  CAS  Google Scholar 

  55. Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khan A, Khan AAP, Asiri AM, Khan I (2017) Facial synthesis, characterization of graphene oxide-zirconium tungstate (GO-Zr(WO4)2) nanocomposite and its application as modified microsensor for dopamine. J Alloys Compd 723:811–819

    Article  CAS  Google Scholar 

  57. Kaçar C, Erden PE, Kiliç E (2017) Amperometric l-lysine biosensor based on carboxylated multiwalled carbon nanotubes-SnO2 nanoparticles-graphene composite. Appl Surf Sci 419:916–923

    Article  Google Scholar 

  58. Hallaj R, Haghighi N (2017) Photoelectrochemical amperometric sensing of cyanide using a glassy carbon electrode modified with graphene oxide and titanium dioxide nanoparticles. Microchim Acta 184:3581–3590

    Article  CAS  Google Scholar 

  59. Sreejesh M, Shenoy S, Sridharan K, Kufian D, Arof AK, Nagaraja HS (2017) Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications. Appl Surf Sci 410:336–343

    Article  CAS  Google Scholar 

  60. Lee H, Hong JA (2017) Enhancement of catalytic activity of reduced graphene oxide via transition metal doping strategy. Nanoscale Res Lett 12:426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pakapongpan S, Poo-Arporn RP (2017) Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Mater Sci Eng C 76:398–405

    Article  CAS  Google Scholar 

  62. Zhao C, Wu X, Li P, Zhao C, Qian X (2017) Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchim Acta 184:2341–2348

    Article  CAS  Google Scholar 

  63. Li J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196–201

    Article  CAS  PubMed  Google Scholar 

  64. Liu M, Pan D, Pan W, Zhu Y, Hu X, Han H, Wang C, Shen D (2017) In-situ synthesis of reduced graphene oxide/gold nanoparticles modified electrode for speciation analysis of copper in seawater. Talanta 174:500–506

    Article  CAS  PubMed  Google Scholar 

  65. Bindewald EH, Schibelbain AF, Papi MAP, Neiva EGC, Zarbin AJG, Bergamini MF, Marcolino-Júnior LH (2017) Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. Mater Sci Eng C 79:262–269

    Article  CAS  Google Scholar 

  66. Ba Hashwan SS, Ruslinda AR, Fatin MF, Arshad MKM, Hashim U (2017) Reduced graphene oxide–multiwalled carbon nanotubes composites as sensing membrane electrodes for DNA detection. Microsyst Technol 23:3421–3428

    Article  CAS  Google Scholar 

  67. Mao Y, Bao Y, Gan S, Li F, Niu L (2011) Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens Bioelectron 28:291–297

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward P. Randviir or Craig E. Banks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Randviir, E.P., Banks, C.E. (2018). Graphene-Based Electrochemical Sensors. In: Kranz, C. (eds) Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, vol 17. Springer, Cham. https://doi.org/10.1007/5346_2018_25

Download citation

Publish with us

Policies and ethics