Skip to main content

Silicon Nanowire Field-Effect Biosensors

  • Chapter
  • First Online:
Book cover Label-Free Biosensing

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 16))

Abstract

Silicon (Si), still by far the most important semiconductor material in this day and age, is dominating the microelectronic industry for decades. Due to well-studied and firmly established processing methods, Si also serves as a robust technology platform for the development of new devices in different scientific areas such as optics, photovoltaics and sensor applications. One-dimensional forms of Si such as Si nanowires (SiNW), due to their high surface-to-volume ratio, well-controlled material properties and surfaces, are at the forefront of miniaturized sensor devices. In the recent years, many bottom-up and top-down methods of SiNW fabrication were established and utilized for state-of-the-art sensor platforms towards emerging sensor applications. In this chapter, we will discuss the evolution of the classical ion-sensitive field-effect transistor (ISFET) concept into its nanoscale versions. Firstly, we describe the basis of the ISFET operation and different readout methods for sensing of biomolecules of different sizes and surface charges. Then, we focus on SiNW sensor platforms that were used for the detection of various chemicals and biomolecules. Significant advances were made towards realizing single-cell assays as well as novel applications such as organ-on-a-chip. We discuss these new developments and the different detection methods utilized for SiNW sensors. Differences in bottom-up and top-down fabrication methods are summarized in brief. Further, the intrinsic limitations associated with SiNW sensors so far hindering their commercialization are discussed. In the end, other competing technologies and future prospects for the application of SiNW sensors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17:70–71

    PubMed  CAS  Google Scholar 

  2. Bergveld P (2003) Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem 88:1–20

    Article  CAS  Google Scholar 

  3. van Hal REG, Eijkel JCT, Bergveld P (1996) A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv Colloid Interf Sci 69:31–62

    Article  Google Scholar 

  4. Afrasiabi R (2016) Silicon nanoribbon FET sensors: fabrication, surface modification and microfluidic integration. Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  5. Shinwari MW, Deen MJ, Landheer D (2007) Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectron Reliab 47:2025–2057

    Article  Google Scholar 

  6. Rani D, Pachauri V, Mueller A, Vu XT, Nguyen TC, Ingebrandt S (2016) On the use of scalable nanoISFET arrays of silicon with highly reproducible sensor performance for biosensor applications. ACS Omega 1:84–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ortiz-Conde A, García-Sánchez FJ, Muci J, Barrios AT, Liou JJ, Ho C-S (2013) Revisiting MOSFET threshold voltage extraction methods. Microelectron Reliab 53:90–104

    Article  Google Scholar 

  8. Skoog DA, West DM, Holler FJ, Crouch SR (2013) Fundamentals of analytical chemistry, 9th edn. Brooks/Cole Cengage Learning, Belmont

    Google Scholar 

  9. Vu XT (2011) Silicon nanowire transistor arrays for biomolecular detection. Dissertation, RWTH Aachen University, Aachen, Germany

    Google Scholar 

  10. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  PubMed  CAS  Google Scholar 

  11. Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, Mooney DJ, Reed MA (2009) Label-free biomarker detection from whole blood. Nat Nanotechnol 5:138–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lin S-P, Pan C-Y, Tseng K-C, Lin M-C, Chen C-D, Tsai C-C, Yu S-H, Sun Y-C, Lin T-W, Chen Y-T (2009) A reversible surface functionalized nanowire transistor to study protein–protein interactions. Nano Today 4:235–243

    Article  CAS  Google Scholar 

  13. Noor MO, Krull UJ (2014) Silicon nanowires as field-effect transducers for biosensor development: a review. Anal Chim Acta 825:1–25

    Article  PubMed  CAS  Google Scholar 

  14. Li B-R, Chen C-C, Kumar UR, Chen Y-T (2014) Advances in nanowire transistors for biological analysis and cellular investigation. Analyst 139:1589–1608

    Article  PubMed  CAS  Google Scholar 

  15. Kim A, Ah CS, Yu HY, Yang J-H, Baek I-B, Ahn C-G, Park CW, Jun MS, Lee S (2007) Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl Phys Lett 91:103901

    Article  CAS  Google Scholar 

  16. Landheer D, Aers G, McKinnon WR, Deen MJ, Ranuarez JC (2005) Model for the field-effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors. J Appl Phys 98:044701

    Article  CAS  Google Scholar 

  17. Landheer D, McKinnon WR, Aers G, Jiang W, Deen MJ, Shinwari MW (2007) Calculation of the response of field-effect transistors to charged biological molecules. IEEE Sensors J 7:1233–1242

    Article  CAS  Google Scholar 

  18. Landheer D, McKinnon WR, Jiang WH, Aers G (2008) Effect of screening on the sensitivity of field-effect devices used to detect oligonucleotides. Appl Phys Lett 92:253901

    Article  CAS  Google Scholar 

  19. McKinnon WR, Landheer D (2006) Sensitivity of a field-effect transistor in detecting DNA hybridization, calculated from the cylindrical Poisson-Boltzmann equation. J Appl Phys 100:054703

    Article  CAS  Google Scholar 

  20. Poghossian A, Cherstvy A, Ingebrandt S, Offenhäusser A, Schöning MJ (2005) Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors Actuators B Chem 111–112:470–480

    Article  CAS  Google Scholar 

  21. Schöning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127:1137–1151

    Article  PubMed  Google Scholar 

  22. Zhang G-J, Zhang G, Chua JH, Chee R-E, Wong EH, Agarwal A, Buddharaju KD, Singh N, Gao Z, Balasubramanian N (2008) DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett 8:1066–1070

    Article  PubMed  CAS  Google Scholar 

  23. Huang W, Diallo AK, Dailey JL, Besar K, Katz HE (2015) Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. J Mater Chem C 3:6445–6470

    Article  CAS  Google Scholar 

  24. Schasfoort RBM, Bergveld P, Kooyman RPH, Greve J (1990) Possibilities and limitations of direct detection of protein charges by means of an immunological field-effect transistor. Anal Chim Acta 238:323–329

    Article  CAS  Google Scholar 

  25. De Vico L, Iversen L, Sorensen MH, Brandbyge M, Nygard J, Martinez KL, Jensen JH (2011) Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors. Nanoscale 3:3635–3640

    Article  PubMed  CAS  Google Scholar 

  26. Eicher D, Merten CA (2011) Microfluidic devices for diagnostic applications. Expert Rev Mol Diagn 11:505–519

    Article  PubMed  Google Scholar 

  27. Rim T, Meyyappan M, Baek C-K (2014) Optimized operation of silicon nanowire field effect transistor sensors. Nanotechnology 25:505501

    Article  PubMed  CAS  Google Scholar 

  28. Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–1104

    Article  PubMed  CAS  Google Scholar 

  29. Maedler C, Kim D, Spanjaard RA, Hong M, Erramilli S, Mohanty P (2016) Sensing of the melanoma biomarker TROY using silicon nanowire field-effect transistors. ACS Sens 1:696–701

    Article  CAS  Google Scholar 

  30. Antonisse MMG, Snellink-Ruël BHM, Lugtenberg RJW, Engbersen JFJ, van den Berg A, Reinhoudt DN (2000) Membrane characterization of anion-selective CHEMFETs by impedance spectroscopy. Anal Chem 72:343–348

    Article  PubMed  CAS  Google Scholar 

  31. Kharitonov AB, Wasserman J, Katz E, Willner I (2001) The use of impedance spectroscopy for the characterization of protein-modified ISFET devices: application of the method for the analysis of biorecognition processes. J Phys Chem B 105:4205–4213

    Article  CAS  Google Scholar 

  32. Laborde C, Pittino F, Verhoeven HA, Lemay SG, Selmi L, Jongsma MA, Widdershoven FP (2015) Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat Nanotechnol 10:791–795

    Article  PubMed  CAS  Google Scholar 

  33. Ingebrandt S (2015) Bioelectronics: sensing beyond the limit. Nat Nanotechnol 10:734–735

    Article  PubMed  CAS  Google Scholar 

  34. Susloparova A, Koppenhofer D, Law JKY, Vu XT, Ingebrandt S (2015) Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level. Lab Chip 15:668–679

    Article  PubMed  CAS  Google Scholar 

  35. Nguyen TC, Vu XT, Freyler M, Ingebrandt S (2013) PSPICE model for silicon nanowire field-effect transistor biosensors in impedimetric measurement mode. Phys Status Solidi A 210:870–876

    Article  CAS  Google Scholar 

  36. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  PubMed  CAS  Google Scholar 

  37. Hsu C-C, Yang CY, Lai C-J, Dai C-L (2014) Optimization of reusable polysilicon nanowire sensor for salt concentration measurement. Jpn J Appl Phys 53:06JE04

    Article  CAS  Google Scholar 

  38. Krivitsky V, Zverzhinetsky M, Patolsky F (2016) Antigen-dissociation from antibody-modified nanotransistor sensor arrays as a direct biomarker detection method in unprocessed biosamples. Nano Lett 16:6272–6281

    Article  PubMed  CAS  Google Scholar 

  39. Salhi B, Hossain MK, Mukhaimer AW, Al-Sulaiman FA (2016) Nanowires: a new pathway to nanotechnology-based applications. J Electroceram 37:34–49

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stoop RL, Wipf M, Müller S, Bedner K, Wright IA, Martin CJ, Constable EC, Fu W, Tarasov A, Calame M, Schönenberger C (2015) Competing surface reactions limiting the performance of ion-sensitive field-effect transistors. Sensors Actuators B Chem 220:500–507

    Article  CAS  Google Scholar 

  41. Amato M, Rurali R (2016) Surface physics of semiconducting nanowires. Prog Surf Sci 91:1–28

    Article  CAS  Google Scholar 

  42. Chen S (2013) Electronic sensors based on nanostructured field-effect devices. Dissertation, Uppsala University, Uppsala, Sweden

    Google Scholar 

  43. Luye M, Ye C, Sawtelle SD, Wipf M, Xuexin D, Reed MA (2015) Silicon nanowire field-effect transistors – a versatile class of potentiometric nanobiosensors. IEEE 3:287–302

    Google Scholar 

  44. Trivedi K, Yuk H, Floresca HC, Kim MJ, Hu W (2011) Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors. Nano Lett 11:1412–1417

    Article  PubMed  CAS  Google Scholar 

  45. Zeimpekis I, Sun K, Hu C, Thomas O, de Planque MRR, Chong HMH, Morgan H, Ashburn P (2015) Study of parasitic resistance effects in nanowire and nanoribbon biosensors. Nanoscale Res Lett 10:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nair PR, Alam MA (2007) Design considerations of silicon nanowire biosensors. IEEE Trans Electron Dev 54:3400–3408

    Article  CAS  Google Scholar 

  47. Rajan NK, Routenberg DA, Reed MA (2011) Optimal signal-to-noise ratio for silicon nanowire biochemical sensors. Appl Phys Lett 98:264107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Carmignani C, Rozeau O, Scheiblin P, Thuaire A, Reynaud P, Barraud S, Ernst T, Cheramy S, Vinet M (2016) Fine charge sensing using a silicon nanowire for biodetection. In: 2016 international symposium on VLSI technology, systems and application (VLSI-TSA), Hsinchu, 2016, pp 1–2

    Google Scholar 

  49. Abdul Rashid JI, Abdullah J, Yusof NA, Hajian R (2013) The development of silicon nanowire as sensing material and its applications. J Nanomater 2013:16

    Article  CAS  Google Scholar 

  50. Adam T, Hashim U (2015) Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules. Biosens Bioelectron 67:656–661

    Article  PubMed  CAS  Google Scholar 

  51. Pui T-S, Agarwal A, Ye F, Tou Z-Q, Huang Y, Chen P (2009) Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays. Nanoscale 1:159–163

    Article  PubMed  CAS  Google Scholar 

  52. Lu N, Gao A, Zhou H, Wang Y, Yang X, Wang Y, Li T (2016) Progress in Silicon nanowire-based field-effect transistor biosensors for label-free detection of DNA. Chin J Chem 34:308–316

    Article  CAS  Google Scholar 

  53. Li B-R, Hsieh Y-J, Chen Y-X, Chung Y-T, Pan C-Y, Chen Y-T (2013) An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. J Am Chem Soc 135:16034–16037

    Article  PubMed  CAS  Google Scholar 

  54. Shen S-H, Cheng H, Kao T-Y, Chen M-J, Lin C-T (2014) Silicon-based multi-nanowire biosensor with high-k dielectric and stacked oxide sensing membrane for cardiac troponin I detection. Proc Eng 87:648–651

    Article  CAS  Google Scholar 

  55. Xiaofeng G, Rui Z, Xiaomei Y (2015) High sensitive detections of norovirus DNA and IgG by using multi-SiNW-FET biosensors. 2015 Transducers – 2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), Anchorage, AK, 2015, pp 1537–1540

    Google Scholar 

  56. Zheng G, Lieber CM (2009) Nanowire biosensors for label-free, real-time, ultrasensitive protein detection. Methods Mol Biol 790:223–237

    Article  CAS  Google Scholar 

  57. Regonda S, Tian R, Gao J, Greene S, Ding J, Hu W (2013) Silicon multi-nanochannel FETs to improve device uniformity/stability and femtomolar detection of insulin in serum. Biosens Bioelectron 45:245–251

    Article  PubMed  CAS  Google Scholar 

  58. Zhang A, Lieber CM (2016) Nano-bioelectronics. Chem Rev 116:215–257

    Article  PubMed  CAS  Google Scholar 

  59. Shehada N, Cancilla JC, Torrecilla JS, Pariente ES, Brönstrup G, Christiansen S, Johnson DW, Leja M, Davies MPA, Liran O, Peled N, Haick H (2016) Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano 10:7047–7057

    Article  PubMed  CAS  Google Scholar 

  60. Hwang S-W, Lee CH, Cheng H, Jeong J-W, Kang S-K, Kim J-H, Shin J, Yang J, Liu Z, Ameer GA, Huang Y, Rogers JA (2015) Biodegradable elastomers and Silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett 15:2801–2808

    Article  PubMed  CAS  Google Scholar 

  61. Kim A, Ah CS, Park CW, Yang J-H, Kim T, Ahn C-G, Park SH, Sung GY (2010) Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. Biosens Bioelectron 25:1767–1773

    Article  PubMed  CAS  Google Scholar 

  62. Pui T-S, Agarwal A, Ye F, Huang Y, Chen P (2011) Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires. Biosens Bioelectron 26:2746–2750

    Article  PubMed  CAS  Google Scholar 

  63. Mao Y, Shin K-S, Wang X, Ji Z, Meng H, Chui CO (2016) Semiconductor electronic label-free assay for predictive toxicology. Sci Rep 6:24982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhang G-J, Chai KTC, Luo HZH, Huang JM, Tay IGK, Lim AE-J, Je M (2012) Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC. Biosens Bioelectron 35:218–223

    Article  PubMed  CAS  Google Scholar 

  65. Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4:245–247

    Article  CAS  Google Scholar 

  66. Xie P, Xiong Q, Fang Y, Qing Q, Lieber CM (2011) Local electrical potential detection of DNA by nanowire–nanopore sensors. Nat Nanotechnol 7:119–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci U S A 101:14017–14022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Qing Q, Jiang Z, Xu L, Gao R, Mai L, Lieber CM (2014) Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat Nanotechnol 9:142–147

    Article  PubMed  CAS  Google Scholar 

  69. Dai X, Zhou W, Gao T, Liu J, Lieber CM (2016) Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat Nanotechnol 11:776–782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Timko BP, Cohen-Karni T, Yu G, Qing Q, Tian B, Lieber CM (2009) Electrical recording from hearts with flexible nanowire device arrays. Nano Lett 9:914–918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Schuhmann TG, Yao J, Hong G, Fu T-M, Lieber CM (2017) Syringe-injectable electronics with a plug-and-play input/output interface. Nano Lett 17:5836–5842. https://doi.org/10.1021/acs.nanolett.7b03081

    Article  PubMed  CAS  Google Scholar 

  72. Zhou W, Dai X, Lieber CM (2017) Advances in nanowire bioelectronics. Rep Prog Phys 80:016701

    Article  PubMed  CAS  Google Scholar 

  73. Lin S-P, Vinzons LU, Kang Y-S, Lai T-Y (2015) Non-faradaic electrical impedimetric investigation of the interfacial effects of neuronal cell growth and differentiation on silicon nanowire transistors. ACS Appl Mater Interfaces 7:9866–9878

    Article  PubMed  CAS  Google Scholar 

  74. Puppo F, Traversa FL, Di Ventra M, De Micheli G, Carrara S (2016) Surface trap mediated electronic transport in biofunctionalized silicon nanowires. Nanotechnology 27:345503

    Article  PubMed  CAS  Google Scholar 

  75. Choi HM, Shin DJ, Lee JH, Mo H-S, Park TJ, Park B-G, Kim DM, Choi S-J, Kim DH, Park J (2016) The analysis of characteristics in dry and wet environments of silicon nanowire-biosensor. J Nanosci Nanotechnol 16:4901–4905

    Article  PubMed  CAS  Google Scholar 

  76. Heller I, Janssens AM, Männik J, Minot ED, Lemay SG, Dekker C (2008) Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett 8:591–595

    Article  PubMed  CAS  Google Scholar 

  77. Schwartz M, Nguyen TC, Vu XT, Weil M, Wilhelm J, Wagner P, Thoelen R, Ingebrandt S (2016) DNA detection with top–down fabricated silicon nanowire transistor arrays in linear operation regime. Phys Status Solidi A 213:1510–1519

    Article  CAS  Google Scholar 

  78. Namdari P, Daraee H, Eatemadi A (2016) Recent advances in silicon nanowire biosensors: synthesis methods, properties, and applications. Nanoscale Res Lett 11:406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kim S, Rim T, Kim K, Lee U, Baek E, Lee H, Baek C-K, Meyyappan M, Deen MJ, Lee J-S (2011) Silicon nanowire ion-sensitive field-effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics. Analyst 136:5012–5016

    Article  PubMed  CAS  Google Scholar 

  80. Dehzangi A, Larki F, Naseri MG, Navasery M, Majlis BY, Wee MFR, Halimah MK, Islam MS, Ali SHM, Saion E (2015) Fabrication and simulation of single crystal p-type Si nanowire using SOI technology. Appl Surf Sci 334:87–93

    Article  CAS  Google Scholar 

  81. Nuzaihan MMN, Hashim U, Ruslinda AR, Arshad MK, Baharin MHA (2015) Fabrication of silicon nanowires array using E-beam lithography integrated with microfluidic channel for pH sensing. Curr Nanosci 11:239–244

    Article  CAS  Google Scholar 

  82. Tong HD, Chen S, van der Wiel WG, Carlen ET, van den Berg A (2009) Novel top-down wafer-scale fabrication of single crystal Silicon nanowires. Nano Lett 9:1015–1022

    Article  PubMed  CAS  Google Scholar 

  83. Balla T, Spearing SM, Monk A (2008) An assessment of the process capabilities of nanoimprint lithography. J Phys D Appl Phys 41:174001

    Article  CAS  Google Scholar 

  84. Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA (2007) Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445:519–522

    Article  PubMed  CAS  Google Scholar 

  85. Gao A, Lu N, Dai P, Li T, Pei H, Gao X (2011) Silicon nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 11:3974–3978

    Article  PubMed  CAS  Google Scholar 

  86. Li J, Pud S, Petrychuk M, Offenhäusser A, Vitusevich S (2014) Sensitivity enhancement of Si nanowire field-effect transistor biosensors using single trap phenomena. Nano Lett 14:3504–3509

    Article  PubMed  CAS  Google Scholar 

  87. Gao XPA, Zheng G, Lieber CM (2010) Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett 10:547–552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Gao A, Lu N, Wang Y, Li T (2016) Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics. Sci Rep 6:22554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Li B-R, Chen C-W, Yang W-L, Lin T-Y, Pan C-Y, Chen Y-T (2013) Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosens Bioelectron 45:252–259

    Article  PubMed  CAS  Google Scholar 

  90. Chu C-J, Yeh C-S, Liao C-K, Tsai L-C, Huang C-M, Lin H-Y, Shyue J-J, Chen Y-T, Chen C-D (2013) Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano Lett 13:2564–2569

    Article  PubMed  CAS  Google Scholar 

  91. Park I, Li Z, Pisano AP, Williams RS (2007) Selective surface functionalization of silicon nanowires via nanoscale Joule heating. Nano Lett 7:3106–3111

    Article  PubMed  CAS  Google Scholar 

  92. Bergveld P (1996) The future of biosensors. Sensors Actuators A Phys 56:65–73

    Article  CAS  Google Scholar 

  93. Morrison SR, Madou MJ, Frese KW (1980) Imperfections in and ion diffusion through oxide layers on silicon. Appl Surf Sci 6:138–148

    Article  CAS  Google Scholar 

  94. Zhou W, Dai X, Fu TM, Xie C, Liu J, Lieber CM (2014) Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett 14:1614–1619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Liu J, Xie C, Dai X, Jin L, Zhou W, Lieber CM (2013) Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc Natl Acad Sci 110:6694–6699

    Article  PubMed  PubMed Central  Google Scholar 

  96. Poghossian A, Schöning MJ (2014) Label-free sensing of biomolecules with field-effect devices for clinical spplications. Electroanalysis 26:1197–1213

    Article  CAS  Google Scholar 

  97. Huang Y-W, Wu C-S, Chuang C-K, Pang S-T, Pan T-M, Yang Y-S, Ko F-H (2013) Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Anal Chem 85:7912–7918

    Article  PubMed  CAS  Google Scholar 

  98. Cheng S, Hotani K, Hideshima S, Kuroiwa S, Nakanishi T, Hashimoto M, Mori Y, Osaka T (2014) Field-effect transistor biosensor using antigen binding fragment for detecting tumor marker in human serum. Materials 7:2490–2500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kim KS, Lee H-S, Yang J-A, Jo M-H, Han S-K (2009) The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors. Nanotechnology 20:235501

    Article  PubMed  CAS  Google Scholar 

  100. Presnova G, Presnov D, Krupenin V, Grigorenko V, Trifonov A, Andreeva I, Ignatenkoa O, Egorova A, Rubtsovaa M (2017) Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens Bioelectron 88:283–289

    Article  PubMed  CAS  Google Scholar 

  101. Elnathan R, Kwiat M, Pevzner A, Engel Y, Burstein L, Khatchtourints A, Lichtenstein A, Kantaev R, Patolsky F (2012) Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett 12:5245–5254

    Article  PubMed  CAS  Google Scholar 

  102. Gao N, Zhou W, Jiang X, Hong G, Fu T-M, Lieber CM (2015) General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett 15:2143–2148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ingebrandt S, Han Y, Nakamura F, Poghossian A, Schöning MJ, Offenhäusser A (2007) Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors. Biosens Bioelectron 22:2834–2840

    Article  CAS  PubMed  Google Scholar 

  104. Susloparova A, Koppenhöfer D, Vu XT, Weil M, Ingebrandt S (2013) Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosens Bioelectron 40:50–56

    Article  PubMed  CAS  Google Scholar 

  105. Pandya HJ, Kim HT, Roy R, Chen W, Cong L, Zhong H, Foran DJ, Desai JP (2014) Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements. Sensors Actuators B Chem 199:259–268

    Article  CAS  Google Scholar 

  106. Balasubramanian K, Kern K (2014) 25th anniversary article: label-free electrical biodetection using carbon nanostructures. Adv Mater 26:1154–1175

    Article  PubMed  CAS  Google Scholar 

  107. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8:1102–1120

    Article  PubMed  CAS  Google Scholar 

  108. Khung YL, Narducci D (2013) Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors. Biosens Bioelectron 50:278–293

    Article  CAS  Google Scholar 

  109. Lin T-Y, Li B-R, Tsai S-T, Chen C-W, Chen C-H, Chen Y-T, Pan C-Y (2012) Improved silicon nanowire field-effect transistors for fast protein-protein interaction screening. Lab Chip 13:676–684

    Article  Google Scholar 

  110. Krivitsky V, Hsiung L-C, Lichtenstein A, Brudnik B, Kantaev R, Elnathan R, Pevzner A, Khatchtourints A, Patolsky F (2012) Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all. Nano Lett 12:4748–4756

    Article  PubMed  CAS  Google Scholar 

  111. Tsai C-C, Chiang P-L, Sun C-J, Lin T-W, Tsai M-H, Chang Y-C, Chen Y-T (2011) Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology 22:135503

    Article  PubMed  CAS  Google Scholar 

  112. McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hoffman JM, Stayton PS, Hoffman AS, Lai JJ (2015) Stimuli-responsive reagent system for enabling microfluidic immunoassays with biomarker purification and enrichment. Bioconjug Chem 26:29–38

    Article  PubMed  CAS  Google Scholar 

  114. Xie Y, Yang S, Mao Z, Li P, Zhao C, Cohick Z, Huang P-H, Huang TJ (2014) In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced raman scattering systems. ACS Nano 8:12175–12184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kuan D-H, Wang IS, Lin J-R, Yang C-H, Huang C-H, Lin Y-H, Lin C-T, Huang N-T (2016) A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes. Lab Chip 16:3105–3113

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Ingebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, D., Pachauri, V., Ingebrandt, S. (2018). Silicon Nanowire Field-Effect Biosensors. In: Schöning, M., Poghossian, A. (eds) Label-Free Biosensing. Springer Series on Chemical Sensors and Biosensors, vol 16. Springer, Cham. https://doi.org/10.1007/5346_2017_19

Download citation

Publish with us

Policies and ethics