Skip to main content

The Renaissance of Fullerene Superconductivity

  • Chapter
  • First Online:
Book cover 50 Years of Structure and Bonding – The Anniversary Volume

Part of the book series: Structure and Bonding ((STRUCTURE,volume 172))

Abstract

Unconventional high-T c superconductivity, defined both in terms of the magnitude of the superconducting transition temperature, T c, and the key role played by electronic correlations, not only is the realm of atom-based low-dimensional layered systems such as the cuprates or the iron pnictides but is also accessible in molecular systems such as the cubic alkali fullerides with stoichiometry A3C60 (A=alkali metal). In fulleride superconductors, isotropic high-T c superconductivity occurs in competition with electronic ground states resulting from a fine balance between electron correlations and electron–phonon coupling in an electronic phase diagram strikingly similar to those of unconventional superconductors such as the cuprates and the heavy fermions. Superconductivity at the highest T c (38 K) known for any molecular material emerges from the antiferromagnetic insulating state solely by changing an electronic parameter – the overlap between the outer wave functions of the constituent molecules – and T c scales universally in a structure-independent dome-like relationship with proximity to the Mott metal–insulator transition (quantified by V, the volume/C60, or equivalently by (U/W), the ratio of the on-site Coulomb energy, U, to the electronic bandwidth, W), a hallmark of electron correlations characteristic of high-T c superconductors other than fullerides. The C60 molecular electronic structure plays a key role in the Mott–Jahn–Teller (MJT) insulator formed at large V, with the on-molecule dynamic Jahn–Teller (JT) effect distorting the C60 3– units and quenching the t 1u orbital degeneracy responsible for metallicity. As V decreases, the MJT insulator transforms first into an unconventional correlated JT metal (where localised electrons coexist with metallicity and the on-molecule distortion persists) and then into a Fermi liquid with a less prominent molecular electronic signature. This normal state crossover is mirrored in the evolution of the superconducting state, with the highest T c found at the boundary between unconventional correlated and conventional weak-coupling BCS superconductivity, where the interplay between extended and molecular aspects of the electronic structure is optimised to create the superconductivity dome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Antiferromagnetic

bcc:

Body-centred cubic

bco:

Body-centred orthorhombic

BCS:

Bardeen–Cooper–Schrieffer

EPR:

Electron paramagnetic resonance

fcc:

Face-centred cubic

fco:

Face-centred orthorhombic

HOMO:

Highest occupied molecular orbital

IR:

Infrared

JT:

Jahn–Teller

LRO:

Long-range order

LUMO:

Lowest unoccupied molecular orbital

MIT:

Metal–insulator transition

MJT:

Mott–Jahn–Teller

NMR:

Nuclear magnetic resonance

ZFC:

Zero field cooled

μSR:

Muon spin relaxation

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  4. Margadonna S, Iwasa Y, Takenobu T, Prassides K (2004) Struct Bond 109:127

    Article  CAS  Google Scholar 

  5. Tanigaki K, Ebbesen TW, Saito S, Mizuki J, Tsai JS, Kubo Y, Kuroshima S (1991) Nature 352:222

    Article  CAS  Google Scholar 

  6. Haddon RC, Hebard AF, Rosseinsky MJ, Murphy DW, Duclos SJ, Lyons KB, Miller B, Rosamilia JM, Fleming RM, Kortan AR, Glarum SH, Makhija AV, Muller AJ, Eick RH, Zahurak SM, Tycko R, Dabbagh G, Thiel FA (1991) Nature 350:320

    Article  CAS  Google Scholar 

  7. Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, Ramirez AP, Kortan AR (1991) Nature 350:600

    Article  CAS  Google Scholar 

  8. Holczer K, Klein O, Huang SM, Kaner RB, Fu KJ, Whetten RL, Diederich F (1991) Science 252:1154

    Article  CAS  Google Scholar 

  9. Rosseinsky MJ, Ramirez AP, Glarum SH, Murphy DW, Haddon RC, Hebard AF, Palstra TTM, Kortan AR, Zahurak SM, Makhija AV (1991) Phys Rev Lett 66:2830

    Article  CAS  Google Scholar 

  10. Stephens PW, Mihaly L, Lee PL, Whetten RL, Huang SM, Kaner R, Deiderich F, Holczer K (1991) Nature 351:632

    Article  CAS  Google Scholar 

  11. Fleming RM, Ramirez AP, Rosseinsky MJ, Murphy DW, Haddon RC, Zahurak SM, Makhija AV (1991) Nature 352:787

    Article  CAS  Google Scholar 

  12. Schluter M, Lannoo M, Needels M, Baraff GA, Tomanek D (1992) Phys Rev Lett 68:526

    Article  CAS  Google Scholar 

  13. Chakravarty S, Gelfand MP, Kivelson S (1991) Science 254:970

    Article  CAS  Google Scholar 

  14. Lof RW, VanVeenendaal MA, Koopmans B, Jonkman HT, Sawatzky GA (1992) Phys Rev Lett 68:3924

    Article  CAS  Google Scholar 

  15. Koch E, Gunnarsson O, Martin RM (1999) Phys Rev Lett 83:620

    Article  CAS  Google Scholar 

  16. Capone M, Fabrizio M, Castellani C, Tosatti E (2002) Science 296:2364

    Article  CAS  Google Scholar 

  17. Iwasa Y (2010) Nature 466:191

    Article  CAS  Google Scholar 

  18. Gunnarsson O (1997) Rev Mod Phys 69:575

    Article  CAS  Google Scholar 

  19. Prassides K (1997) Curr Opin Solid State Mater Sci 2:433

    Article  CAS  Google Scholar 

  20. Rosseinsky MJ (1998) Chem Mater 10:2665

    Article  CAS  Google Scholar 

  21. Kosaka M, Tanigaki K, Prassides K, Margadonna S, Lappas A, Brown CM, Fitch AN (1999) Phys Rev B 59:R6628

    Article  CAS  Google Scholar 

  22. Forro L, Mihaly L (2001) Rep Prog Phys 64:649

    Article  CAS  Google Scholar 

  23. Margadonna S, Prassides K (2002) J Solid State Chem 168:639

    Article  CAS  Google Scholar 

  24. Iwasa Y, Takenobu T (2003) J Phys Condens Matter 15:R495

    Article  CAS  Google Scholar 

  25. Gunnarsson O (2004) Alkali-doped fullerides: narrow-band solids with unusual properties. World Scientific, Singapore

    Google Scholar 

  26. Gunnarsson O, Han JE, Koch E, Crespi VH (2005) Struct Bond 114:71

    CAS  Google Scholar 

  27. Keimer B, Kivelson SA, Norman MR, Uchida S, Zaanen J (2015) Nature 518:179

    Article  CAS  Google Scholar 

  28. Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar MA, Kitano H, Salovich N, Giannetta RW, Walmsley P, Carrington A, Prozorov R, Matsuda Y (2012) Science 336:1554

    Article  CAS  Google Scholar 

  29. Knebel G, Aoki D, Braithwaite D, Salce B, Flouquet J (2006) Phys Rev B 74:020501

    Article  Google Scholar 

  30. Ardavan A, Brown S, Kagoshima S, Kanoda K, Kuroki K, Mori H, Ogata M, Uji S, Wosnitza J (2012) J Phys Soc Jpn 81:011004

    Article  Google Scholar 

  31. Rosseinsky MJ, Murphy DW, Fleming RM, Zhou O (1993) Nature 364:425

    Article  CAS  Google Scholar 

  32. Takenobu T, Muro T, Iwasa Y, Mitani T (2000) Phys Rev Lett 85:381

    Article  CAS  Google Scholar 

  33. Ganin AY, Takabayashi Y, Bridges CA, Khimyak YZ, Margadonna S, Prassides K, Rosseinsky MJ (2006) J Am Chem Soc 128:14784

    Article  CAS  Google Scholar 

  34. Prassides K, Margadonna S, Arcon D, Lappas A, Shimoda H, Iwasa Y (1999) J Am Chem Soc 121:11227

    Article  CAS  Google Scholar 

  35. Takabayashi Y, Ganin AY, Rosseinsky MJ, Prassides K (2007) Chem Commun 2007:870

    Article  Google Scholar 

  36. Arvanitidis J, Papagelis K, Takabayashi Y, Takanobu T, Iwasa Y, Rosseinsky MJ, Prassides K (2007) J Phys Condens Matter 19:386235

    Article  Google Scholar 

  37. Uemura YJ (2009) Nat Mater 8:253

    Article  CAS  Google Scholar 

  38. Ganin AY, Takabayashi Y, Khimyak YZ, Margadonna S, Tamai A, Rosseinsky MJ, Prassides K (2008) Nat Mater 7:367

    Article  CAS  Google Scholar 

  39. Palstra TTM, Zhou O, Iwasa Y, Sulewski PE, Fleming RM, Zegarski BR (1995) Solid State Commun 93:327

    Article  CAS  Google Scholar 

  40. Darling GR, Ganin AY, Rosseinsky MJ, Takabayashi Y, Prassides K (2008) Phys Rev Lett 101:136404

    Article  CAS  Google Scholar 

  41. Takabayashi Y, Ganin AY, Jeglič P, Arčon D, Takano T, Iwasa Y, Ohishi Y, Takata M, Takeshita N, Prassides K, Rosseinsky MJ (2009) Science 323:1585

    Article  CAS  Google Scholar 

  42. Han JE, Gunnarsson O, Crespi VH (2003) Phys Rev Lett 90:167006

    Article  CAS  Google Scholar 

  43. Capone M, Fabrizio M, Castellani C, Tosatti E (2009) Rev Mod Phys 81:943

    Article  Google Scholar 

  44. Akashi R, Arita R (2013) Phys Rev B 88:054510

    Article  Google Scholar 

  45. Murakami Y, Werner P, Tsuji N, Aoki H (2013) Phys Rev B 88:125126

    Article  Google Scholar 

  46. Nomura Y, Sakai S, Capone M, Arita R (2015) Sci Adv 1, e1500568

    Article  Google Scholar 

  47. Ganin AY, Takabayashi Y, Jeglič P, Arčon D, Potočnik A, Baker PJ, Ohishi Y, McDonald MT, Tzirakis MD, McLennan A, Darling GR, Takata M, Rosseinsky MJ, Prassides K (2010) Nature 466:221

    Article  CAS  Google Scholar 

  48. Ihara Y, Alloul H, Wzietek P, Pontiroli D, Mazzani M, Riccó M (2010) Phys Rev Lett 104:256402

    Article  CAS  Google Scholar 

  49. Kasahara Y, Takeuchi Y, Itou T, Zadik RH, Takabayashi Y, Ganin AY, Arcon D, Rosseinsky MJ, Prassides K, Iwasa Y (2014) Phys Rev B 90:014413

    Article  Google Scholar 

  50. Klupp G, Matus P, Kamarás K, Ganin AY, McLennan A, Rosseinsky MJ, Takabayashi Y, McDonald MT, Prassides K (2012) Nat Commun 3:912

    Article  Google Scholar 

  51. Potocnik A, Ganin AY, Takabayashi Y, McDonald MT, Heinmaa I, Jeglic P, Stern R, Rosseinsky MJ, Prassides K, Arcon D (2014) Chem Sci 5:3008

    Article  CAS  Google Scholar 

  52. Jiang H-C, Kivelson S (2015) arXiv:1510.04704

    Google Scholar 

  53. Fradkin E, Kivelson SA (2012) Nat Phys 8:864

    Article  CAS  Google Scholar 

  54. Zadik RH, Takabayashi Y, Klupp G, Colman RH, Ganin AY, Potočnik A, Jeglič P, Arčon D, Matus P, Kamarás K, Kasahara Y, Iwasa Y, Fitch AN, Ohishi Y, Garbarino G, Kato K, Rosseinsky MJ, Prassides K (2015) Sci Adv 1, e150059

    Article  Google Scholar 

  55. Potočnik A, Krajnc A, Jeglič P, Takabayashi Y, Ganin AY, Prassides K, Rosseinsky MJ, Arčon D (2014) Sci Rep 4:4265

    Google Scholar 

  56. Wzietek P, Mito T, Alloul H, Pontiroli D, Aramini M, Riccò M (2014) Phys Rev Lett 112:066401

    Article  CAS  Google Scholar 

  57. Tanaka K, Lee WS, Lu DH, Fujimori A, Fujii T, Terasaki I, Scalapino DJ, Devereaux TP, Hussain Z, Shen Z-X (2006) Science 314:1910

    Article  CAS  Google Scholar 

  58. Xu Y-M, Richard P, Nakayama K, Kawahara T, Sekiba Y, Qian T, Neupane M, Souma S, Sato T, Takahashi T, Luo H-Q, Wen H-H, Chen G-F, Wang N-L, Wang Z, Fang Z, Dai X, Ding H (2011) Nat Commun 2:392

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the ‘World Premier International (WPI) Research Center Initiative for Atoms, Molecules and Materials’, Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosmas Prassides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takabayashi, Y., Prassides, K. (2016). The Renaissance of Fullerene Superconductivity. In: Mingos, D. (eds) 50 Years of Structure and Bonding – The Anniversary Volume. Structure and Bonding, vol 172. Springer, Cham. https://doi.org/10.1007/430_2015_207

Download citation

Publish with us

Policies and ethics