Skip to main content

Small Definably-large Cardinals

  • Chapter
Set Theory

Part of the book series: Trends in Mathematics ((TM))

  • 1123 Accesses

Abstract

We study the definably-Mahlo, definably-weakly-compact, and the definably-indescribable cardinals, which are the definable versions of, respectively, Mahlo, weakly-compact, and indescribable cardinals. We study their strength as large cardinals and we show that the relationship between them is almost the same as the relationship between Mahlo, weakly-compact and indescribable cardinals.

This paper was partially written during a research stay of the author at the Centre de Recerca Matemàtica (CRM), at the Universitat Autònoma de Barcelona. The author was partially supported by the research projects: BFM2002-03236 of the Spanish Ministry of Science and Technology, PR-01-GE-10-HUM of the Government of the Principado de Asturias, and 2002GR-00126 of the Generalitat de Catalunya.

To Ramon Bastardes, in memoriam

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Aczel and W. Richter, “Inductive definitions and analogues of large cardinals” in W. Hodges, Ed. Conference in Mathematical Logic-London’70 (Proceedings of a Conference; Bedford College, London 1970), (Springer, Berlin, 1972).

    Google Scholar 

  2. P. Aczel and W. Richter: “Inductive definitions and reflecting properties of admissible ordinals” in J.E. Fenstad and P.G. Hinman, Eds. Generalized Recursion Theory (North-Holland, Amsterdam, 1974).

    Google Scholar 

  3. A. Andretta: “Large cardinals and iteration trees of height ω”, Annals of Pure and Applied Logic, 54 (1991), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Baeten: “Filters and ultrafilters over definable subsets of admissible ordinals” in G.H. Müller and M.M. Richter, eds. Models and sets (Aachen, 1983) (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  5. J. Baeten: Filters and ultrafilters over definable subsets of admissible ordinals, (Centrum voor Wiskunde en Informatica, CWI, Amsterdam, 1986).

    Google Scholar 

  6. J. Bagaria and R. Bosch: “Solovay models and forcing extensions”, The Journal of Symbolic Logic, 69 (2004), 742–766.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Bagaria and R. Bosch: “Proper forcing extensions and Solovay models”, Archive for Mathematical Logic, 43 (2004), 739–750

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Bagaria and R. Bosch: “Generic absoluteness under projective forcing”, forthcoming.

    Google Scholar 

  9. K. Devlin: “Indescribability properties and small large cardinals” in G.H. Müller, A. Oberschel and K. Potthoff, eds. ISILC Logic Conference. Proceedings of the International Summer Institute and Logic Colloquium, Kiel, 1974 (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  10. F.R. Drake: Set Theory. An introduction to large cardinals, (North-Holland, Amsterdam, 1974)

    MATH  Google Scholar 

  11. K. Hauser: “Indescribable cardinals and elementary embeddings”, The Journal of Symbolic Logic, 56 (1991), 439–457.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Hauser: “The indescribability of the order of the indescribable cardinals”, Annals of Pure and Applied Logic, 57 (1992), 45–91.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Jech: Set Theory. The Third Millennium Edition, Revised and Expanded, (Springer, Berlin, 2003)

    MATH  Google Scholar 

  14. A. Kanamori: The Higher Infinite, (Springer, Berlin, 1997)

    MATH  Google Scholar 

  15. M. Kaufmann: “On existence of Σn end extensions” in M. Lerman, J.H. Schmerl and R.I. Soare, Eds. Logic Year 1979–80 (Springer, Berlin, 1981).

    Google Scholar 

  16. M. Kaufmann: “Blunt and topless end extensions of models of set theory”, The Journal of Symbolic Logic, 48 (1983), 1053–1073.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Kaufman and E. Kranakis: “Definable ultrapowers over admissible ordinals”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 30 (1984), 97–118.

    Google Scholar 

  18. E. Kranakis: “Reflection and partition properties of admissible ordinals”, Annals of Mathematical Logic, 22 (1982), 213–242.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Kranakis: “Invisible ordinals and inductive definitions”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 28 (1982), 137–148.

    MATH  MathSciNet  Google Scholar 

  20. E. Kranakis: “Definable ultrafilters and end extensions of constructible sets”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 28 (1982), 395–412.

    MATH  MathSciNet  Google Scholar 

  21. E. Kranakis: “Definable Ramsey and definable Erdös cardinals”, Archiv für Mathematische Logik und Grundlagenforschung, 23 (1983), 115–128.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Kranakis: “Stepping up lemmas in definable partitions” The Journal of Symbolic Logic, 49 (1984), 22–31.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Kranakis: “Definable partitions and reflection properties for regular cardinals”, Notre Dame Journal of Formal Logic, 26 (1985), 408–412.

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Kranakis: “Definable partitions and the projectum”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 31 (1985), 351–355.

    MATH  MathSciNet  Google Scholar 

  25. E. Kranakis and I. Phillips, “Partitions and homogeneous sets for admissible ordinals” in G.H. Müller and M.M. Richter, eds. Models and sets (Aachen, 1983) (Springer-Verlag, Berlin, 1984)

    Google Scholar 

  26. A. Leshem: “On the consistency of the definable tree property on 1”, The Journal of Symbolic Logic, 65 (2000), 1204–1214.

    Article  MATH  MathSciNet  Google Scholar 

  27. Y.N. Moschovakis, “Indescribable cardinals in L”, The Journal of Symbolic Logic, 41 (1976), 554–555

    Google Scholar 

  28. W. Richter: “Recursively Mahlo ordinals and inductive definitions” in R.O. Gandy and C.M.E. Yates, Eds. Logic Colloquium’ 69: Proceedings of the Summer School and Colloquium in Mathematical Logic, Manchester, August of 1969 (Amsterdam, North-Holland, 1971)

    Google Scholar 

  29. W. Richter: “The least Σ 21 and П 21 reflecting ordinals” in G. H. Müller, A. Oberschel and K. Potthoff, eds. ISILC Logic Conference. Proceedings of the International Summer Institute and Logic Colloquium, Kiel, 1974 (Springer-Verlag, Berlin, 1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Bosch, R. (2006). Small Definably-large Cardinals. In: Bagaria, J., Todorcevic, S. (eds) Set Theory. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7692-9_3

Download citation

Publish with us

Policies and ethics