Skip to main content

Temporal databases

  • Invited Papers
  • Conference paper
  • First Online:
Theories and Methods of Spatio-Temporal Reasoning in Geographic Space

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 639))

Abstract

This paper summarizes the major concepts, approaches, and implementation strategies that have been generated over the last fifteen years of research into data base management system support for time-varying information. We first examine the time domain, its structure, dimensionality, indeterminacy, and representation. We then discuss how facts may be associated with time, and consider data modeling and representational issues. We survey the many temporal query languages that have been proposed. Finally, we examine the impact to each of the components of a DBMS of adding temporal support, focusing on query optimization and evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ahn, I., Snodgrass, R. Performance Evaluation of a Temporal Database Management System, in Proceedings of ACM SIGMOD International Conference on Management of Data. Zaniolo, C. (Ed.), Association for Computing Machinery, Washington, DC, (May 1986), 96–107.

    Google Scholar 

  2. Ahn, I. Performance Modeling and Access Methods for Temporal Database Management Systems. Ph.D. Dissertation, Computer Science Department, University of North Carolina at Chapel Hill, (July 1986).

    Google Scholar 

  3. Ahn, I., Snodgrass, R. Partitioned Storage for Temporal Databases. Information Systems 13, 4 (1988), 369–391.

    Google Scholar 

  4. Ahn, I., Snodgrass, R. Performance Analysis of Temporal Queries. Information Sciences 49 (1989), 103–146.

    Google Scholar 

  5. Allen, J.F., Hayes, P.J. A Common-Sense Theory of Time, in Proceedings of the International Joint Conference on Artificial Intelligence. Los Angeles, CA, (August 1985), 528–531.

    Google Scholar 

  6. Anderson, T.L. Modeling Time at the Conceptual Level, in Proceedings of the International Conference on Databases: Improving Usability and Responsiveness. Scheuermann, P. (Ed.), Academic Press, Jerusalem, Israel, (June 1982), 273–297.

    Google Scholar 

  7. Ariav, G. A Temporally Oriented Data Model. ACM Transactions on Database Systems 11, 4 (December 1986), 499–527.

    Google Scholar 

  8. Ben-Zvi, J. The Time Relational Model. Ph.D. Dissertation, Computer Science Department, UCLA, (1982).

    Google Scholar 

  9. Bernstein, P. A. Database System Support for Software Engineering-An Extended Abstract, in Ninth International Conference on Software Engineering. IEEE, ACM, Computer Society Press, Monterey, CA, (March 1987), 166–178.

    Google Scholar 

  10. Bhargava, G., Gadia, S.K. A 2-dimensional temporal relational database model for querying errors and updates, and for achieving zero information-loss. Technical Report TR#89-24, Department of Computer Science, Iowa State University, (December 1989).

    Google Scholar 

  11. Blakeley, J.A., Larson, P.-A., Tompa, F.W. Efficiently Updating Materialized Views, in Proceedings of ACM SIGMOD International Conference on Management of Data. Zaniolo, C. (Ed.), Association for Computing Machinery, Washington, DC, (May 1986), 61–71.

    Google Scholar 

  12. Blakeley, Jose A., Martin, Nancy L. Join Index, Materialized View, and Hybrid-Hash Join: A Performance Analysis, in Proceedings of the Sixth International Conference on Data Engineering. (February 1990), 256–263.

    Google Scholar 

  13. Bolour, A., Anderson, T.L., Dekeyser, L.J., Wong, H.K.T. The Role of Time in Information Processing: A Survey. SigArt Newsletter 80 (April 1982), 28–48.

    Google Scholar 

  14. Chomicki, J., Imelinski, T. Temporal Deductive Databases and Infinite Objects, in Proceedings of the Seventh ACM SIGAct-SIGMod-SIGArt Symposium on Principles of Database Systems. Association for Computing Machinery, Austin, Texas, (March 1988), 61–73.

    Google Scholar 

  15. Chomicki, J., Imelinski, T. Relational Specifications of Infinite Query Answers, in Proceedings of ACM SIGMOD International Conference on Management of Data. (May 1989), 174–183.

    Google Scholar 

  16. Chomicki, J. Polynomial Time Query Processing in Temporal Deductive Databases, in 9th Annual ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Nashville, TN, (April 1990).

    Google Scholar 

  17. Clifford, J., Warren, D.S. Formal Semantics for Time in Databases. ACM Transactions on Database Systems 8, 2 (June 1983), 214–254.

    Google Scholar 

  18. Clifford, J., Tansel, A.U. On an Algebra for Historical Relational Databases: Two Views, in Proceedings of ACM SIGMOD International Conference on Management of Data. Navathe, S. (Ed.), Association for Computing Machinery, Austin, TX, (May 1985), 247–265.

    Google Scholar 

  19. Clifford, J., Rao, A. A Simple, General Structure for Temporal Domains, in Proceedings of the Conference on Temporal Aspects in Information Systems. AFCET, France, (May 1987), 23–30.

    Google Scholar 

  20. Clifford, J., Croker, A. The Historical Relational Data Model (HRDM) and Algebra Based on Lifespans, in Proceedings of the International Conference on Data Engineering. IEEE Computer Society, IEEE Computer Society Press, Los Angeles, CA, (February 1987), 528–537.

    Google Scholar 

  21. Codd, E.F. Relational Completeness of Data Base Sublanguages, Data Base Systems, vol. 6. Prentice Hall, Englewood Cliffs, N.J., (1972), 65–98.

    Google Scholar 

  22. Codd, E.F. Further Normalization of the Data Base Relational Model, Data Base Systems, vol. 6. Prentice hall, Englewood Cliffs, N.J., (1972).

    Google Scholar 

  23. Comer, D. The Ubiquitous B-tree. Computing Surveys 11, 2 (1979), 121–138.

    Article  Google Scholar 

  24. Dadam, P., Lum, V., Werner, H.-D. Integration of Time Versions into a Relational Database System, in Proceedings of the Conference on Very Large Databases. Dayal, U., Schlageter, G., Seng, L.H. (Ed.), Singapore, (August 1984), 509–522.

    Google Scholar 

  25. Date, C. J. An Overview of SQL2. Info. Database 4, 1 (Spring 1989), 8–12.

    Google Scholar 

  26. Date, C. J. A Guide to the SQL Standard (Second Edition). Addison-Wesley, (August 1989).

    Google Scholar 

  27. Date, C. J., White, C. J. A Guide to DB2, vol. 1, 3rd edition. Addison-Wesley, Reading, MA, (September 1990).

    Google Scholar 

  28. Date, C.J. A Proposal for Adding Date and Time Support to SQL. SIGMOD Record 17, 2 (June 1988), 53–76.

    Google Scholar 

  29. Dayal, U., Smith, J.M. PROBE: A Knowledge-Oriented Database Management System, On Knowledge Base Management Systems: Integrating Artificial Intelligence and Database Technologies. Springer-Verlag, (1986).

    Google Scholar 

  30. Dayal, U., Wuu, G. A Uniform Approach to Processing Temporal Queries. Technical Report, Bellcore, (1992).

    Google Scholar 

  31. DeAntonellis, V., Degli, A., Mauri, G., Zonta, B. Extending the Entity-Relationship Approach to Take Into Account Historical Aspects of Systems, in Proceedings of the International Conference on the E-R Approach to Systems Analysis and Design. Chen, P. (Ed.), North Holland, (1979).

    Google Scholar 

  32. Deen, S.M. DEAL; A Relational Language with Deductions, Functions and Recursions. Data and Knowledge Engineering 1 (1985).

    Google Scholar 

  33. Dittrich, Klaus R., Lorie, Raymond A. Version Support for Engineering Database Systems. IEEE Transactions on Software Engineering 14, 4 (April 1988), 429–437.

    Google Scholar 

  34. Dyreson, C. E., Snodgrass, R. T. Historical Indeterminacy. Technical Report TR 92-16a, Computer Science Department, University of Arizona, (July 1992).

    Google Scholar 

  35. Dyreson, C. E., Snodgrass, R. T. Time-stamp Semantics and Representation. TempIS Technical Report 33, Computer Science Department, University of Arizona, (Revised May 1992).

    Google Scholar 

  36. Ecklund, D. J., Ecklund, E. F., Eifrig, R. O., Tonge, F. M. DVSS: A Distributed Version Storage Server for CAD Applications, in Proceedings of the Conference on Very Large Databases. Brighton, England, (1987), 443–454.

    Google Scholar 

  37. Elmasri, R., Wuu, G., Kim, Y. The Time Index — An Access Structure for Temporal Data, in Proceedings of the Conference on Very Large Databases. Brisbane, Australia, (August 1990).

    Google Scholar 

  38. Elmasri, R., Kim, Yeong-Joon, Wuu, G. T. J. Efficient Implementation Techniques for the Time Index, in Proceedings of the Seventh International Conference on Data Engineering. (1991).

    Google Scholar 

  39. Elmasri, R., Jaseemuddin, M., Kouramajian, V. Partitioning of Time Index for Optical Disks, in Proceedings of the International Conference on Data Engineering. Golshani, F. (Ed.), IEEE, Phoenix, AZ, (February 1992), 574–583.

    Google Scholar 

  40. Enderton, H.B. Elements of Set Theory. Academic Press, Inc., New York, N.Y., (1977).

    Google Scholar 

  41. Gadia, S.K. Toward a Multihomogeneous Model for a Temporal Database, in Proceedings of the International Conference on Data Engineering. IEEE Computer Society, IEEE Computer Society Press, Los Angeles, CA, (February 1986), 390–397.

    Google Scholar 

  42. Gadia, S.K., Yeung, C.S. A Generalized Model for a Relational Temporal Database, in Proceedings of ACM SIGMOD International Conference on Management of Data. Association for Computing Machinery, Chicago, IL, (June 1988), 251–259.

    Google Scholar 

  43. Gadia, S.K. A Homogeneous Relational Model and Query Languages for Temporal Databases. ACM Transactions on Database Systems 13, 4 (December 1988), 418–448.

    Google Scholar 

  44. Gadia, S.K., Nair, S., Poon, Y.-C. Incomplete Information in Relational Temporal Databases, in Proceedings of the Conference on Very Large Databases. Vancouver, Canada, (August 1992).

    Google Scholar 

  45. Gadia, Shashi K. A Seamless generic extension of SQL for querying temporal data. Technical Report TR-92-02, Computer Science Department, Iowa State University, (May 1992).

    Google Scholar 

  46. Guinot, B., Seidelmann, P.K. Time scales: their history, definition and interpretation. Astronmy & Astrophysics 194 (1988), 304–308.

    Google Scholar 

  47. Gunadhi, H., Segev, A., Shantikumar, G. Selectivity Estimation in Temporal Databases. Technical Report LBL-27435, Lawrence Berkeley Laboratories, (1989).

    Google Scholar 

  48. Gunadhi, H., Segev, A. A Framework For Query Optimization In Temporal Databases, in Fifth International Conference on Statistical and Scientific Database Management Systems. (1989).

    Google Scholar 

  49. Gunadhi, H., Segev, A. Query Processing Algorithms for Temporal Intersection Joins, in Proceedings of the 7th International Conference on Data Engineering. Kobe, Japan, (1991).

    Google Scholar 

  50. Gunadhi, H., Segev, A. Efficient Indexing Methods for Temporal Relations. IEEE Transactions on Knowledge and Data Engineering (forthcoming) (1991).

    Google Scholar 

  51. Guttman, A., R-Trees: A Dynamic Index Structure For Spatial Searching, in Proceedings of ACM SIGMOD International Conference on Management of Data. Yormack, B. (Ed.), Association for Computing Machinery, Boston, MA, (June 1984), 47–57.

    Google Scholar 

  52. Hall, P., Owlett, J., Todd, S. J. P. Relations and Entities, in Modelling in Data Base Management Systems. Nijssen, G. M. (Ed.), North-Holland, (1976), 201–220.

    Google Scholar 

  53. Hammer, M., McLeod, D. Database Description with SDM: A Semantic Database Model. ACM Transactions on Database Systems 6, 3 (September 1981), 351–386.

    Article  Google Scholar 

  54. Hawking, S. A Brief History of Time. Bantam Books, New York, (1988).

    Google Scholar 

  55. Held, G.D., Stonebraker, M., Wong, E. INGRES-A Relational Data Base Management System, in Proceedings of the AFIPS National Computer Conference. AFIPS Press, Anaheim, CA, (May 1975), 409–416.

    Google Scholar 

  56. Hsieh, D. Generic Computer Aided Software Engineering (CASE) Databases Requirements, in Proceedings of the Fifth International Conference on Data Engineering. Los Angeles, CA, (February 1989), 422–423.

    Google Scholar 

  57. Hsu, S.H., Snodgrass, R.T. Optimal Block Size for Repeating Attributes. TempIS Technical Report No. 28, Department of Computer Science, University of Arizona, (December 1991).

    Google Scholar 

  58. Hunter, G., Williamson, I. The Development of a Historical Digital Catastral Database. International Journal for Geographical Information Systems 4, 2 (1990), 169–179.

    Google Scholar 

  59. Jensen, C. S., Mark, L., Roussopoulos, N. Incremental Implementation Model for Relational Databases with Transaction Time. IEEE Transactions on Knowledge and Data Engineerings, 4 (December 1991), 461–473.

    Google Scholar 

  60. Jensen, C. S., Mark, L. Queries on Change in an Extended Relational Model. IEEE Transactions on Knowledge and Data Engineering, to appear (1992).

    Google Scholar 

  61. Jensen, C. S., Snodgrass, R. Temporal Specialization and Generalization. IEEE Transactions on Knowledge and Data Engineering, to appear (1992).

    Google Scholar 

  62. Jensen, C. S., Soo, M. D., Snodgrass, R. T. Unification of Temporal Relations. Technical Report 92-15, Computer Science Department, University of Arizona, (July 1992).

    Google Scholar 

  63. Jensen, C.S., Mark, L., Roussopoulos, N., Sellis, T. Using Caching, Cache Indexing, and Differential Techniques to Efficiently Support Transaction Time. VLDB Journal, to appear (1992).

    Google Scholar 

  64. Jones, C.B. Data structures for three-dimensional spatial information systems in geology. International Journal of Geographical Information Systems 3, 1 (1989), 15–31.

    Google Scholar 

  65. Jones, S., Mason, P., Stamper, R. LEGOL 2.0: A Relational Specification Language for Complex Rules. Information Systems 4, 4 (November 1979), 293–305.

    Google Scholar 

  66. Kabanza, F., Stevenne, J-M, Wolper, P. Handling Infinite Temporal Data, in 9th Annual ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Nashville, TN, (April 1990).

    Google Scholar 

  67. Kahn, K., Gorry, G. A. Mechanizing Temporal Knowledge. Artificial Intelligence (1977), 87–108.

    Google Scholar 

  68. Karlsson, T. Representation and Reasoning about Temporal Knowledge. SYSLAB Working Paper Nr 105, The Systems Development and Artificial Intelligence Laboratory, University of Stockholm, (1986).

    Google Scholar 

  69. Katz, R.H., Chang, E., Bhateja, R. Version Modeling Concepts for Computer-Aided Design Databases, in Proceedings of ACM SIGMOD International Conference on Management of Data. Zaniolo, C. (Ed.), Association for Computing Machinery, Washington, DC, (May 1986), 379–386.

    Google Scholar 

  70. Kimball, K. A. The DATA System. Master's Thesis, University of Pennsylvania, (1978).

    Google Scholar 

  71. Klopprogge, M.R. TERM: An Approach to Include the Time Dimension in the Entity-Relationship Model, in Proceedings of the Second International Conference on the Entity Relationship Approach. Washington, DC, (October 1981), 477–512.

    Google Scholar 

  72. Kolovson, C., Stonebraker, M. Indexing Techniques for Historical Databases, in Proceedings of the Fifth International Conference on Data Engineering. Los Angeles, CA, (February 1989), 127–137.

    Google Scholar 

  73. Kolovson, C., Stonebraker, M. S-Trees: Database Indexing Techniques for Multi-Dimensional Interval Data. Technical Report UCB/ERL M90/35, University of California, (April 1990).

    Google Scholar 

  74. Kolovson, C.P. Indexing Techniques for Multi-Dimensional Spatial Data and Historical Data in Database Management Systems. Ph.D. Dissertation, University of California, Berkeley, (November 1990).

    Google Scholar 

  75. Ladkin, P. The Logic of Time Representation. Ph.D. Dissertation, University of California, Berkeley, (November 1987).

    Google Scholar 

  76. Langran, G., Chrisman, N. A Framework for Temporal Geographic Information. Cartographica 25, 3 (1988), 1–14.

    Google Scholar 

  77. Lee, R.M., Coelho, H., Cotta, J.C. Temporal Inferencing on Administrative Databases. Information Systems 10, 2 (1985), 197–206.

    Google Scholar 

  78. Leung, T.Y., Muntz, R. Query Processing for Temporal Databases, in Proceedings of the 6th International Conference on Data Engineering. Los Angeles, California, (February 1990).

    Google Scholar 

  79. Leung, T.Y., Muntz, R. Stream Processing: Temporal Query Processing and Optimization. Technical Report, University of California, Los Angeles, (December 1991).

    Google Scholar 

  80. Leung, T.Y., Muntz, R. Temporal Query Processing and Optimization in Multiprocessor Database Machines. Technical Report CSD-910077, Computer Science Department, UCLA, (November 1991).

    Google Scholar 

  81. Leung, T.Y., Muntz, R. Generalized Data Stream Indexing and Temporal Query Processing, in Second International Workshop on Research Issues in Data Engineering: Transaction and Query Processing. (February 1992).

    Google Scholar 

  82. Lomet, D., Salzberg, B. Access Methods for Multiversion Data, in Proceedings of ACM SIGMOD International Conference on Management of Data. (June 1989), 315–324.

    Google Scholar 

  83. Lomet, D., Salzberg, B. The Performance of a Multiversion Access Method, in Proceedings of ACM SIGMOD International Conference on Management of Data. Atlantic City, (May 1990), 353–363.

    Google Scholar 

  84. Lomet, D. Consistent Timestamping for Transactions in Distributed Systems. Technical Report CRL90/3, Digital Equipment Corporation, (September 1990).

    Google Scholar 

  85. Lomet, D., Salzberg, B. Concurrency and Recovery for Index Trees. Technical Report CRL 91/8, Digital Equipment Corporation, (August 1991).

    Google Scholar 

  86. Lomet, D. Grow and Post Index Trees: Role, Techniques and Future Potential, in Proc. of the Second Symposium on Large Spatial Databases. (1991).

    Google Scholar 

  87. Lorentzos, N., Johnson, R. Extending Relational Algebra to Manipulate Temporal Data. Information Systems 13, 3 (1988), 289–296.

    Google Scholar 

  88. Lorentzos, N.A. A formal extension of the relational model for the representation and manipulation of generic intervals. Ph.D. Dissertation, Birkbeck College, University of London, (1988).

    Google Scholar 

  89. Lum, V., Dadam, P., Erbe, R., Guenauer, J., Pistor, P., Walch, G., Werner, H., Woodfill, J. Designing DBMS Support for the Temporal Dimension, in Proceedings of ACM SIGMOD International Conference on Management of Data. Yormark, B. (Ed.), Association for Computing Machinery, Boston, MA, (June 1984), 115–130.

    Google Scholar 

  90. Manola, F., Dayal, U. PDM: An Object-Oriented Data Model, in Proceedings of the International Workshop on Object-Oriented Database Systems. (1986).

    Google Scholar 

  91. Mark, D.M., Lauzon, J.P., Cebrian, J.A. A review of quadtree-based strategies for interfacing coverage data with digital elevation models in grid form. International Journal of Geographical Information Systems 3, 1 (1989), 3–14.

    Google Scholar 

  92. McKenzie, E. Bibliography: Temporal Databases. ACM SIGMOD Record 15, 4 (December 1986), 40–52.

    Google Scholar 

  93. McKenzie, E. An Algebraic Language for Query and Update of Temporal Databases. Ph.D. Dissertation, Computer Science Department, University of North Carolina at Chapel Hill, (September 1988).

    Google Scholar 

  94. McKenzie, E., Snodgrass, R. Schema Evolution and the Relational Algebra. Information Systems 15, 2 (June 1990), 207–232.

    Google Scholar 

  95. McKenzie, E., Snodgrass, R. Supporting Valid Time in an Historical Relational Algebra: Proofs and Extensions. Technical Report TR-91-15, Department of Computer Science, University of Arizona, (August 1991).

    Google Scholar 

  96. McKenzie, E., Snodgrass, R. An Evaluation of Relational Algebras Incorporating the Time Dimension in Databases. ACM Computing Surveys 23, 4 (December 1991), 501–543.

    Google Scholar 

  97. Melton, J. (ed.) Solicitation of Comments: Database Language SQL2. American National Standards Institute, Washington, DC, (July 1990).

    Google Scholar 

  98. Montague, R. The proper treatment of quantification in ordinary English, Approaches to Natural Language. D. Reidel Publishing Co., Dordrecht, Holland, (1973).

    Google Scholar 

  99. Narasimhalu, A. A Data Model for Object-Oriented Databases with Temporal Attributes and Relationships. Technical Report, National University of Singapore, (1988).

    Google Scholar 

  100. Navathe, S. B., Ahmed, R. TSQL-A Language Interface for History Databases, in Proceedings of the Conference on Temporal Aspects in Information Systems. AFCET, France, (May 1987), 113–128.

    Google Scholar 

  101. Navathe, S. B., Ahmed, R. A Temporal Relational Model and a Query Language. Information Sciences 49 (1989), 147–175.

    Google Scholar 

  102. U.S. Naval Observatory Time Service Announcement. Series 14, Washington, D.C., (February 1992).

    Google Scholar 

  103. Oracle Computer, Inc. ORACLE Terminal User's Guide. Oracle Corporation, (1987).

    Google Scholar 

  104. Petley, B.W. Time and Frequency in Fundamental Metrology. Proceedings of the IEEE 79, 9 (July 1991), 1070–1077.

    Google Scholar 

  105. Quinn, T.J. The BIPM and the Accurate Measurement of Time. Proceedings of the IEEE 79, 9 (July 1991), 894–906.

    Google Scholar 

  106. Ramsey, N.F. The Past, Present, and Future of Atomic Time and Frequency. Proceedings of the IEEE 79, 9 (July 1991), 936–943.

    Google Scholar 

  107. Rose, E., Segev, A. TOODM — A Temporal Object-Oriented Data Model with Temporal Constraints, in Proceedings of the 10th International Conference on the Entity Relationship Approach. (October 1991).

    Google Scholar 

  108. Roussopoulos, N. View Indexing in Relational Databases. ACM Transactions on Database Systems 7, 2 (June 1982), 258–290.

    Google Scholar 

  109. Roussopoulos, N. An Incremental Access Method for ViewCache: Concept, Algorithms, and Cost Analysis. ACM Transactions on Database Systems 16, 3 (September 1991), 535–563.

    Article  Google Scholar 

  110. Sadeghi, R. A Database Query Language for Operations on Historical Data. Ph.D. Dissertation, Dundee College of Technology, (December 1987).

    Google Scholar 

  111. Sadeghi, R., Samson, W.B., Deen, S.M. HQL — A Historical Query Language. Technical Report, Dundee College of Technology, (September 1987).

    Google Scholar 

  112. Sarda, N. Algebra and Query Language for a Historical Data Model. The Computer Journal 33, 1 (February 1990), 11–18.

    Google Scholar 

  113. Sarda, N. Extensions to SQL for Historical Databases. IEEE Transactions on Knowledge and Data Engineering 2, 2 (June 1990), 220–230.

    Google Scholar 

  114. Satoh, K., Tsuchida, M., Nakamura, F., Oomachi, K. Local and Global Query Optimization Mechanisms for Relational Databases, in Proceedings of the Conference on Very Large Databases. Pirotte, A., Vassiliou, Y. (Ed.), Stockholm, Sweden, (August 1985), 405–417.

    Google Scholar 

  115. Committee on Earth Sciences Our Changing Planet: A U.S. strategy for global change research. (January 1989). (unpublished).

    Google Scholar 

  116. Sciore, E. Using Annotations to Support Multiple Kinds of Versioning in an Object-Oriented Database System. ACM Transactions on Database Systems 16, 3 (September 1991), 417–438.

    Google Scholar 

  117. Sciore, E. Versioning and Configuration management in an Object-Oriented Data Model. Technical Report, Boston College, (1991).

    Google Scholar 

  118. Segev, A., Shoshani, A. Logical Modeling of Temporal Data, in Proceedings of the ACM SIGMOD Annual Conference on Management of Data. Dayal, U., Traiger, I. (Ed.), Association for Computing Machinery, ACM Press, San Francisco, CA, (May 1987), 454–466.

    Google Scholar 

  119. Sellis, T.K. Global Query Optimization, in Proceedings of ACM SIGMOD International Conference on Management of Data. Zaniolo, C. (Ed.), Association for Computing Machinery, Washington, DC, (May 1986), 191–205.

    Google Scholar 

  120. Sheng, R. L. A Linguistic Approach to Temporal Information Analysis. Ph.D. Dissertation, University of California, Berkeley, (May 1984).

    Google Scholar 

  121. Shenoy, S., Özsoyoglu, Z. Design and Implementation of a Semantic Query Optimizer. IEEE Transactions on Data and Knowledge Engineering 1, 3 (September 1989), 344–361.

    Google Scholar 

  122. Smith, J.M., Chang, P.Y-T. Optimizing the Performance of a Relational Algebra Database Interface. Communications of the Association of Computing Machinery 18, 10 (October 1975), 568–579.

    Google Scholar 

  123. Snodgrass, R., Ahn, I. Temporal Databases. IEEE Computer 19, 9 (September 1986), 35–42.

    Google Scholar 

  124. Snodgrass, R. The Temporal Query Language TQuel. ACM Transactions on Database Systems 12, 2 (June 1987), 247–298.

    Google Scholar 

  125. Snodgrass, R., Gomez, S., McKenzie, E. Aggregates in the Temporal Query Language TQuel. IEEE Transactions on Knowledge and Data Engineering, to appear (1993).

    Google Scholar 

  126. Snodgrass, R.T. An Overview of TQuel, Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings Pub. Co., (1993), chapt. 6.

    Google Scholar 

  127. Soo, M., Snodgrass, R. Mixed Calendar Query Language Support for Temporal Constants. TempIS Technical Report 29, Computer Science Department, University of Arizona, (Revised May 1992)

    Google Scholar 

  128. Soo, M., Snodgrass, R. Multiple Calendar Support for Conventional Database Management Systems. Technical Report 92-7, Computer Science Department, University of Arizona, (February 1992).

    Google Scholar 

  129. Soo, M., Snodgrass, R., Dyreson, C., Jensen, C. S., Kline, N. Architectural Extensions to Support Multiple Calendars. TempIS Technical Report 32, Computer Science Department, University of Arizona, (Revised May 1992).

    Google Scholar 

  130. Soo, M. D. Bibliography on Temporal Databases. ACM SIGMOD Record 20, 1 (March 1991), 14–23.

    Google Scholar 

  131. Sripada, S. A Logical Framework for Temporal Deductive Databases, in Proceedings of the Conference on Very Large Databases. Los Angeles, CA, (1988), 171–182.

    Google Scholar 

  132. Stam, R., Snodgrass, R. A Bibliography on Temporal Databases. Database Engineering 7, 4 (December 1988), 231–239.

    Google Scholar 

  133. Stonebraker, M., Wong, E., Kreps, P., Held, G. The Design and Implementation of INGRES. ACM Transactions on Database Systems 1, 3 (September 1976), 189–222.

    Article  Google Scholar 

  134. Stonebraker, M. The Design of the POSTGRES Storage System, in Proceedings of the Conference on Very Large Databases. Hammersley, P. (Ed.), Brighton, England, (September 1987), 289–300.

    Google Scholar 

  135. Stonebraker, M., Rowe, L., Hirohama, M. The Implementation of POSTGRES. IEEE Transactions on Knowledge and Data Engineering 2, 1 (March 1990), 125–142.

    Google Scholar 

  136. Tandem Computers, Inc. ENFORM Reference Manual. Cupertino, CA, (1983).

    Google Scholar 

  137. Tansel, A.U. Adding Time Dimension to Relational Model and Extending Relational Algebra. Information Systems 11, 4 (1986), 343–355.

    Google Scholar 

  138. Tansel, A.U., Arkun, M.E. HQuel, A Query Language for Historical Relational Databases, in Proceedings of the Third International Workshop on Statistical and Scientific Databases. (July 1986).

    Google Scholar 

  139. Tansel, A.U., Arkun, M.E., Özsoyoglu, G. Time-By-Example Query Language for Historical Databases. IEEE Transactions on Software Engineering 15, 4 (April 1989), 464–478.

    Article  Google Scholar 

  140. Thompson, P.M. A Temporal Data Model Based on Accounting Principles. Ph.D. Dissertation, Department of Computer Science, University of Calgary, (March 1991).

    Google Scholar 

  141. Tsichritzis, D.C., Lochovsky, F.H. Data Models (Software Series). Prentice-Hall, (1982).

    Google Scholar 

  142. Tuzhilin, A., Clifford, J. A Temporal Relational Algebra as a Basis for Temporal Relational Completeness, in Proceedings of the Conference on Very Large Databases. Brisbane, Australia, (August 1990).

    Google Scholar 

  143. Ullman, Jeffrey David Database and Knowledge — Base Systems — II: The New Technologies, vol. II. Computer Science Press, 1803 Research Boulevard, Rockville, MD 20850, (1988).

    Google Scholar 

  144. Urban, S.D., Delcambre, L.M.L. An Analysis of the Structural, Dynamic, and Temporal Aspects of Semantic Data Models, in Proceedings of the International Conference on Data Engineering. IEEE Computer Society, IEEE Computer Society Press, Los Angeles, CA, (February 1986), 382–389.

    Google Scholar 

  145. Van Benthem, J.F.K.A. The Logic of Time. Reidel, (1982).

    Google Scholar 

  146. Vrana, R. Historical Data as an Explicit Component of Land Information Systems. International Journal for Geographical Information Systems 3, 1 (1989), 33–49.

    Google Scholar 

  147. Wiederhold, G., Fries, J.F., Weyl, S. Structured Organization of Clinical Data Bases, in Proceedings of the AFIPS National Computer Conference. AFIPS, (1975), 479–485.

    Google Scholar 

  148. Wiederhold, G., Jajodia, S., Litwin, W. Dealing with Granularity of Time in Temporal Databases, in Proc. 3rd Nordic Conf. on Advanced Information Systems Engineering. Trondheim, Norway, (May 1991).

    Google Scholar 

  149. Worboys, M.F. Reasoning About GIS Using Temporal and Dynamic Logics. (October 1990). (unpublished).

    Google Scholar 

  150. Wuu, G., Dayal, U. A Uniform Model for Temporal Object-Oriented Databases, in Proceedings of the International Conference on Data Engineering. Tempe, Arizona, (February 1992), 584–593.

    Google Scholar 

  151. Zloof, M. Query By Example, in Proceedings of the National Computer Conference. AFIPS, (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. U. Frank I. Campari U. Formentini

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Snodgrass, R.T. (1992). Temporal databases. In: Frank, A.U., Campari, I., Formentini, U. (eds) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. Lecture Notes in Computer Science, vol 639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55966-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-55966-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55966-5

  • Online ISBN: 978-3-540-47333-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics