Skip to main content

The Discrepancy Method

(Invited Presentation)

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1533))

Included in the following conference series:

Abstract

Discrepancy theory is the study of irregularities of distributions. A typical question is: given a “complicated” distribution, find a “simple” one that approximates it well. As it turns out, many questions in complexity theory can be reduced to problems of that type. This raises the possibility that the deep mathematical techniques of discrepancy theory might be of utility to theoretical computer scientists. As will be discussed in this talk this is, indeed, the case. We will give several examples of breakthroughs derived through the application of the “discrepancy method.”

This work was supported in part by NSF Grant CCR-93-01254, NSF Grant CCR-96-23768, ARO Grant DAAH04-96-1-0181, and NEC Research Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, J., Chen, W.W.L. Irregularities of distribution, Cambridge Tracts in Mathematics, 89, Cambridge Univ. Press, Cambridge, 1987.

    Google Scholar 

  2. Chazelle, B. An optimal convex hull algorithm in any fixed dimension, Disc. Comput. Geom., 10 (1993), 377–409.

    Article  MATH  MathSciNet  Google Scholar 

  3. Chazelle, B. Lower bounds for off-line range searching, Disc. Comput. Geom., 17 (1997), 53–65.

    Article  MATH  MathSciNet  Google Scholar 

  4. Chazelle, B. A spectral approach to lower bounds with applications to geometric searching, SIAM J. Comput., 27 (1998), 545–556.

    Article  MATH  MathSciNet  Google Scholar 

  5. Chazelle, B. The Discrepancy Method, book in preparation, 1998.

    Google Scholar 

  6. Chazelle, B., Matoušek, J. On linear-time deterministic algorithms for optimization problems in fixed dimension, J. Algorithms, 21 (1996), 579–597.

    Article  MATH  MathSciNet  Google Scholar 

  7. Drmota, M., Tichy, R.F., Sequences, Discrepancies and Applications, Springer-Verlag, Lecture Notes in Mathematics, Vol. 1651, March 1997.

    Google Scholar 

  8. Dyer, M.E. A class of convex programs with applications to computational geometry, Proc. 8th Annu. ACM Symp. Comput. Geom. (1992), 9–15.

    Google Scholar 

  9. Even, G., Goldreich, O., Luby, M., Nisan, N., Veličković, B. Efficient approximation of product distributions, Random Structures & Algorithms, 13 (1998), 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  10. Impagliazzo, R., Zuckerman, D. How to recycle random bits, Proc. 30th Annu. IEEE Symp. Found. Comput. Sci. (1989), 248–253.

    Google Scholar 

  11. Kushilevitz, E., Nisan, N. Communication Complexity, Cambridge Univ. Press, 1997

    Google Scholar 

  12. Luby, M. Pseudorandomness and Cryptographic Applications, Princeton Computer Science Notes, Princeton University Press, 1996.

    Google Scholar 

  13. Matoušek, J. Derandomization in computational geometry, J. Algorithms, 20 (1996), 545–580.

    Article  MathSciNet  MATH  Google Scholar 

  14. Matoušek, J. Geometric Discrepancy: An Illustrated Guide, Springer-Verlag, in press.

    Google Scholar 

  15. Megiddo, N. Linear programming in linear time when the dimension is fixed, J. ACM, 31 (1984), 114–127.

    Article  MATH  MathSciNet  Google Scholar 

  16. Niederreiter, H. Random number Generation and Quasi-Monte Carlo Methods, CBMS-NSF, SIAM, Philadelphia, PA, 1992.

    Google Scholar 

  17. Razborov, A., Szemerédi, Wigderson, A. Constructing small sets that are uniform in arithmetic progressions, Combinatorics, Probability and Computing, 2 (1993), 513–518.

    Article  MATH  MathSciNet  Google Scholar 

  18. Sinclair, A. Algorithms for Random Generation and Counting: A Markov Chain Approach, Progress in Theoretical Computer Science, Birkhauser, 1993.

    Google Scholar 

  19. Sipser, M. Expanders, Randomness, or Time versus Space, Proc. 1st Annu. Conf. Structure in Complexity Theory (1986), 325–329.

    Google Scholar 

  20. Spencer, J. Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM, 1987.

    Google Scholar 

  21. van der Corput, J.G. Verteilungsfunktionen I. Proc. Nederl. Akad. Wetensch., 38 (1935), 813–821.

    MATH  Google Scholar 

  22. van der Corput, J.G. Verteilungsfunktionen II. Proc. Nederl. Akad. Wetensch., 38 (1935), 1058–1066.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chazelle, B. (1998). The Discrepancy Method. In: Chwa, KY., Ibarra, O.H. (eds) Algorithms and Computation. ISAAC 1998. Lecture Notes in Computer Science, vol 1533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49381-6_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-49381-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65385-1

  • Online ISBN: 978-3-540-49381-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics