Skip to main content

Co-Evolutionary Algorithm for RBF by Self- Organizing Population of neurons

  • Conference paper
  • First Online:
Computational Methods in Neural Modeling (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2686))

Included in the following conference series:

Abstract

This paper presents a new evolutionary procedure to design optimal networks of Radial Basis Functions (RBFs). It defines a self-organizing process into a population of RBFs based on the estimation of the fitness for each neuron in the population, and on the use of operators that, according to a set of fuzzy rules, transform the RBFs. This way, it has been possible to define cooperation, speciation, and niching features in the evolution of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeline, P.J.; Saunders, G.M.; Pollack, J.B.:“An evolutionary algorithm that constructs recurrent neural networks”. IEEE Trans. Neural Networks, Vol.5, No.1, pp.54–65. January, 1994.

    Article  Google Scholar 

  2. V. Cherkassky, D. Gehring, F. Mulier, “Comparison of adaptive methods for function estimation from samples”, IEE Trans. Neural Networks, 7(4), pp. 969–984, 1996.

    Article  Google Scholar 

  3. Coello, C.C.:“An Updated Survey of Evolutionary Multiobjective Optimization Techniques: State of the art and future trends”. Congress on Evolutionary Computation, CEC’99, pp.3–13, 1999

    Google Scholar 

  4. N. Garcia-Pedrajas, C. Hervas-Martínez, J. Muñoz-Pérez, “Multi-objective cooperative coevolution of artificial neural networks (multi-objective cooperative networks)”, Neural Networks, vol. 15, pp. 1259–1278, 2002

    Article  Google Scholar 

  5. González, J.; Rojas, I.; Pomares, H.; Ortega, J:“RBF Neural Networks, Multiobjective Optimization and Time Series Forecasting”, Lecture Notes in Computer Science, (2084), pp.498–505. 2001

    Google Scholar 

  6. Haykin, Neural Networks. A comprehensive foundation, 2nd. NJ: Prentice-Hall, 1999.

    MATH  Google Scholar 

  7. Mandani, E. H.; Assilian, S.:“An experitment in linguistic synthesys with a fuzzy logic controller”. Int. J. Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975

    Article  Google Scholar 

  8. Maniezzo, V.:“Genetic evolution of the topology and weight distribution of neural networks”. IEEE Trans. on Neural Networks, Vol.5, No.1, pp.39–53. January, 1994.

    Google Scholar 

  9. Marquardt, D. W “An algorithm for least-squares estimation of non-linear inequalities,” SIAM J. Appl. Math., vol. 11, pp. 431–441, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  10. Moody, J; Darken, C.: “Fast learning networks of locally-tuned processing units,” Neural Computation, vol. 3 n. 4 pp.579–588, 1991

    Article  Google Scholar 

  11. Pomares, H.; Rojas, I.; Ortega, J.; González, J.; Prieto, A.: “A systematic approach to Self-Generating Fuzzy Rule-Table for Function Approximation”. IEEE Trans. Syst., Man, and Cyber., Part B, 30(3):431–447. 2000

    Article  Google Scholar 

  12. Rivera, A.; Ortega, J.; Prieto A.:“Design of RBF networks by cooperative/competitive evolution of units” International Conference on Artificial Neural Networks and Genetic Algorithms, ICANNGA 2001. April 2001.

    Google Scholar 

  13. Rivera, A.; Ortega, J.; del Jesús, M.; González, J; “Optimización de RBFs mediante cooperación-competición de neuronas y algoritmos de minimización de error”. II Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados. MAEB03, Febrero 2003.

    Google Scholar 

  14. Smalz, R.; Conrad, M.:“Combining evolution with credit apportionment: a new learning algorithm for neural nets”. Neural Netwroks, Vol.7, No.2, pp.341–351, 1994.

    Article  Google Scholar 

  15. Whitehead, B.A.; Choate, T.D.:“Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series prediction”. IEEE Trans. on Neural Networks, Vol.7, No.4, pp.869–880. July, 1996.

    Article  Google Scholar 

  16. Widrow, B.; Lehr, M.A.:“30 Years of adaptative neural networks: perceptron, madaline and backpropagation”. Proceedings of the IEEE, Vol. 78 n. 9, September 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rivera, A.J., Ortega, J., Rojas, I., del Jesús, M.J. (2003). Co-Evolutionary Algorithm for RBF by Self- Organizing Population of neurons. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_60

Download citation

  • DOI: https://doi.org/10.1007/3-540-44868-3_60

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40210-7

  • Online ISBN: 978-3-540-44868-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics