Skip to main content

An A Posteriori Error Estimator for Adaptive Mesh Refinement Using Parallel In-Element Particle Tracking Methods

  • Conference paper
  • First Online:
High Performance Computing for Computational Science — VECPAR 2002 (VECPAR 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2565))

Abstract

Particle tracking methods are a versatile computational technique central to the simulation of a wide range of scientific applications. In this paper we present an a posteriori error estimator for adaptive mesh refinement (AMR) using particle tracking methods. The approach uses a parallel computing framework, the “in-element” particle tracking method, based on the assumption that particle trajectories are computed by problem data localized to individual elements. Adaptive mesh refinement is used to control the mesh discretization errors along computed characteristics of the particle trajectories. Traditional a posteriori error estimators for AMR methods inherit flaws from the discrete solution of time-marching partial differential equations (PDEs)-particularly for advection/convection-dominated transport applications. To address this problem we introduce a new a posteriori error estimator based on particle tracking methods.We present experimental results that detail the performance of a parallel implementation of this particle method approach for a two-dimensional, time-marching convection-diffusion benchmark problem on an unstructured, adaptive mesh.

This work was supported by NSF grants DGE-9987589 and ACI-9908057, DOE grant DG-FG02-99ER25373, and the Alfred P. Sloan Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Barnes and P. Hut. A hierarchical O(N logN) force calculation algorithm. Nature, 324:446, Dec. 1986. 96

    Google Scholar 

  2. H.-P. Cheng, J.-R. Cheng, and G.T. Yeh. A particle tracking technique for the Lagrangian-Eulerian finite-element method in multi-dimensions. International Journal for Numerical Methods in Engineering, 39:1115–1136, 1996. 97, 98

    Article  MATH  Google Scholar 

  3. J.-R. Cheng, H.-P. Cheng, and G. T. Yeh. A Lagrangian-Eulerian method with adaptively local zooming and peak/valley capturing approach to solve twodimensional advection-diffusion transport equations. International Journal for Numerical Methods in Engineering, 39:987–1016, 1996. 94

    Article  MATH  Google Scholar 

  4. J-R.C. Cheng and P.E. Plassmann. The accuracy and performance of parallel inelement particle tracking methods. In Proceedings of the Tenth SIAM Conference on Parallel Processing for Scientific Computing, pages 252–261. SIAM, 2001. 98

    Google Scholar 

  5. J-R.C. Cheng and P.E. Plassmann. A parallel algorithm for the dynamic partitioning of particle-mesh computational systems. In Computational Science-ICCS 2002,The Springer Verlag Lecture Notes in Computer Science (LNCS 2331) series, Part III, pages 1020–1029. Springer Verlag, 2002. 97, 98

    Chapter  Google Scholar 

  6. L.P. Chew. Guaranteed-quality triangular meshes. Technical Report TR-89-983, Computer Science Department, Cornell University, 1989. 95

    Google Scholar 

  7. Convection-Diffusion Forum. Specification of five convection-diffusion benchmark problems. 7th International Conference on Computational Methods in Water Resources, Massachusetts Institute of Technology, June 1988. 101

    Google Scholar 

  8. L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy. Toward a universal h-p adaptive finite element strategy, part 1. Constrained approximation and data structures. Computer Methods in Applied Mechanics and Engineering, 77:79–112, 1989. 95

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Diachin and J. Herzog. Analytic streamline calculations for linear tetrahedra. In 13th AIAA Computational Fluid Dynamics Conference, pages 733–742, 1997. 96

    Google Scholar 

  10. Joseph E. Flaherty, Pamela J. Paslow, Mark S. Shephard, and John D. Vasilakis. Adaptive Methods for Partial Differential Equations. Society for Industrial and Applied Mathematics, Philadelphia, 1989. 95

    MATH  Google Scholar 

  11. Lori Freitag, Mark Jones, Carl Ollivier-Gooch, and Paul Plassmann. SUMAA3d Web page. http://www.mcs.anl.gov/sumaa3d/, Mathematics and Computer Science Division, Argonne National Laboratory, 1997. 100

  12. A. Harten. Eno schemes with subcell resolution. Journal of Computational Physics, 83:148–184, 1989. 94

    Article  MATH  MathSciNet  Google Scholar 

  13. Mark T. Jones and Paul E. Plassmann. Adaptive refinement of unstructured finite-element meshes. Finite Elements in Analysis and Design, 25(1–2):41–60, March 1997. 95

    Article  MATH  MathSciNet  Google Scholar 

  14. David Kay and David Silvester. The reliability of local error estimators for convection-diffusion equations. IMA Journal of Numerical Analysis, 21:107–122, 2001. 95

    Article  MATH  MathSciNet  Google Scholar 

  15. A.V. Malevsky and S. J. Thomas. Parallel algorithms for semi-Lagrangian advection. International Journal for Numerical Methods in Fluids, 25:455–473, 1997. 96

    Article  MATH  Google Scholar 

  16. David K. McAllister. The design of an API for particle systems. Technical Report UNC-CH TR00-007, Department of Computer Science, University of North Carolina, 1999. 95

    Google Scholar 

  17. Bongki Moon, Mustafa Uysal, and Joel Saltz. Index translation schemes for adaptive computations on distributed memory multicomputers. In Proceedings of the 9-th International Parallel Processing Symposium, pages 812–819, Santa Barbara, California, April 24–28, 1995. IEEE Computer Society Press. 96

    Google Scholar 

  18. K.W. Morton. Numerical Solution of Convection-Diffusion Problems. Klumer Academic Publishers, 1995. 95

    Google Scholar 

  19. Robert P. Nance, Richard G. Wilmoth, Bongki Moon, H.A. Hassan, and Joel Saltz. Parallel DSMC solution of three-dimensional flow over a finite flat plate. In Proceedings of the ASME 6-th Joint Thermophysics and Heat Transfer Conference, Colorado Springs, Colorado, June 20–23, 1994. AIAA. 96

    Google Scholar 

  20. J. T. Oden, L. Demkowicz, W. Rachowicz, and T.A. Westermann. Toward a universal h-p adaptive finite element strategy, part 2. A posterior error estimation. Computer Methods in Applied Mechanics and Engineering, 77:113–180, 1989. 95

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Rachowicz, J.T. Oden, and L. Demkowicz. Toward a universal h-p adaptive finite element strategy, part 3. Design of h-p meshes. Computer Methods in Applied Mechanics and Engineering, 77:181–212, 1989. 95

    Article  MathSciNet  MATH  Google Scholar 

  22. C. D. Robinsion and J. K. Harvey. A fully concurrent DSMC implementation with adaptive domain decomposition. In Proceedings of the Parallel CFD Meeting, 1997, 1997. 96

    Google Scholar 

  23. H.-G. Roos, M. Stynes, and L. Tobiska. Numerical Methods for Singularity Perturbed Differential Equations. Springer, 1996. 95

    Google Scholar 

  24. J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In Proc. 4th ACM-SIAM Symp. on Disc. Algorithms, pages 83–92, 1993. 95

    Google Scholar 

  25. Rüdiger Verfürth. A Review of A Posteriori Error Estimation and Adaptive MeshRefinement Techniques. John Wiley & Sons Ltd and B. G. Teubner, 1996. 95, 97, 98

    Google Scholar 

  26. John Volker. A numerical study of a posteriori error estimators for convection-diffusion equations. Computer Methods in Applied Mechanics and Engineering, 190:757–781, 2000. 97, 98

    Article  MATH  MathSciNet  Google Scholar 

  27. N.P. Weatherill, O. Hassan, D. L. Marcum, and M. J. Marchant. Grid generation by the Delaunay triangulation. Von Karman Institute for Fluid Dynamics, 1993-1994 Lecture Series, NASA Ames Research Center, January 1994. 95

    Google Scholar 

  28. B. C. Wong and L.N. Long. A data-parallel implementation of the DSMC method on the connection machine. Computing Systems in Engineering Journal, 3(1–4), Dec. 1992. 96

    Google Scholar 

  29. H. C. Yee, R. F. Warming, and A. Harten. Implicit total variation diminishing (TVD) schemes for steady-state calculations. Journal of Computational Physics, 57:327–360, 1985. 94

    Article  MATH  MathSciNet  Google Scholar 

  30. G.T. Yeh, J.-R. Cheng, H.-P. Cheng, and C.H. Sung. An adaptive local grid refinement based on the exact peak capturing and oscillation free scheme to solve transport equations. International Journal of Computational Fluids Dynamics, 24:293–332, 1995. 94

    MATH  Google Scholar 

  31. G.T. Yeh, J.-R. Cheng, and T. E. Short. An exact peak capturing and essentially oscillation-free scheme to so lve advection-dispersion-reactive transport equations. Water Resources Research, 28(11):2937–2951, 1992. 94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, JR.C., Plassmann, P.E. (2003). An A Posteriori Error Estimator for Adaptive Mesh Refinement Using Parallel In-Element Particle Tracking Methods. In: Palma, J.M.L.M., Sousa, A.A., Dongarra, J., Hernández, V. (eds) High Performance Computing for Computational Science — VECPAR 2002. VECPAR 2002. Lecture Notes in Computer Science, vol 2565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36569-9_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-36569-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00852-1

  • Online ISBN: 978-3-540-36569-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics