Skip to main content

Finding Large Independent Sets in Polynomial Expected Time

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2607))

Abstract

We consider instances of the maximum independent set problem that are constructed according to the following semirandom model. First, let G n,p be a random graph, and let S be a set consisting of k vertices, chosen uniformly at random. Then, let G 0 be the graph obtained by deleting all edges connecting two vertices in S. Adding to G 0 further edges that do not connect two vertices in S, an adversary completes the instance G = G. n,p,k . We propose an algorithm that in the case k ≥C(n/p) 1/2 on input G within polynomial expected time finds an independent set of size ≥ k.

Research supported by the Deutsche Forschungsgemeinschaft (grant DFG FOR 413/1-1)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Kahale, N.: Approximating the independence number via the φ-function. Math. Programming 80 (1998) 253–264.

    MathSciNet  Google Scholar 

  2. Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. Random Structures & Algorithms 13 (1998) 457–466

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Krivelevich, M., Vu, V.H.: On the concentration of the eigenvalues of random symmetric matrices. to appear in Israel J. of Math.

    Google Scholar 

  4. Blum, A., Spencer, J.: Coloring random and semirandom k-colorable graphs. J. of Algorithms 19(2) (1995) 203–234

    MathSciNet  Google Scholar 

  5. Bollobás, B.: Random graphs, 2nd edition. Cambridge University Press (2001)

    Google Scholar 

  6. Coja-Oghlan, A.: Finding sparse induced subgraphs of semirandom graphs. Proc. 6. Int. Workshop RANDOM (2002) 139–148

    Google Scholar 

  7. Coja-Oghlan, A.: Coloring k-colorable semirandom graphs in polynomial expected time via semidefinite programming, Proc. 27th Int. Symp. on Math. Found. of Comp. Sci. (2002) 201–211

    Google Scholar 

  8. Coja-Oghlan, A., Taraz, A.: Colouring random graphs in expected polynomial time. To appear in STACS 2003.

    Google Scholar 

  9. Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. and System Sci. 63 (2001) 639–671

    MATH  MathSciNet  Google Scholar 

  10. Feige, U., Krauthgamer, J.: Finding and certifying a large hidden clique in a semirandom graph. Random Structures & Algorithms 16 (2000) 195–208

    Article  MATH  MathSciNet  Google Scholar 

  11. Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Structures & Algorithms 10 (1997) 5–42

    Article  MathSciNet  Google Scholar 

  12. Füredi, Z., Komloś, J.: The eigenvalues of random symmetric matrices, Combinatorica 1 (1981) 233–241

    Article  MATH  MathSciNet  Google Scholar 

  13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer (1988) ai]14._Håstad, J.: Clique is hard to approximate within n 1-. Proc. 37th Annual Symp. on Foundations of Computer Science (1996) 627–636

    Google Scholar 

  14. Janson, S., Luczak, T., Ruciński, A.: Random Graphs. Wiley (2000)

    Google Scholar 

  15. Jerrum, M.: Large cliques elude the metropolis process. Random Structures & Algorithms 3 (1992) 347–359

    Article  MATH  MathSciNet  Google Scholar 

  16. Juhász, F.: The asymptotic behaviour of Lovász. function for random graphs. Combinatorica 2 (1982) 269–280

    Google Scholar 

  17. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semide finite programming. J. Assoc. Comput. Mach. 45 (1998) 246–265

    MATH  MathSciNet  Google Scholar 

  18. Karp, R.: Reducibility among combinatorial problems. Miller, R.E., Thatcher, J.W. (eds.): Complexity of Computer Computations. Plenum Press (1972) 85–103

    Google Scholar 

  19. Karp, R.: Probabilistic analysis of some combinatorial search problems. Traub, J.F. (ed.): Algorithms and complexity: New Directions and Recent Results. Academic Press (1976) 1–19

    Google Scholar 

  20. Knuth, D.: The sandwich theorem, Electron. J. Combin. 1 (1994)

    Google Scholar 

  21. Kuĉera, L.: Expected complexity of graph partitioning problems. Discrete Applied Math. 57 (1995) 193–212

    Article  MATH  Google Scholar 

  22. Krivelevich, M., Vu, V.H.: Approximating the independence number and the chromaticnumber in expected polynomial time. J. of Combinatorial Optimization 6 (2002) 143–155

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coja-Oghlan, A. (2003). Finding Large Independent Sets in Polynomial Expected Time. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_45

Download citation

  • DOI: https://doi.org/10.1007/3-540-36494-3_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00623-7

  • Online ISBN: 978-3-540-36494-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics