Skip to main content

Omnidirectional Sensing for Robot Control

  • Chapter
  • First Online:
  • 587 Accesses

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 4))

Abstract

Most of today’s mobile robots are equipped with some kind of omnidirectional camera. The advantages of such sensors in tasks like navigation, homing, appearance-based localization cannot be overlooked. In this paper, we address the basic questions of how to process omnidirectional signals, how to describe the intrinsic geometry of omnidirectional cameras with a single viewpoint, how to infer 3D motion, and how to place omnidirectional sensors efficiently to guarantee complete coverage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H. Adelson and J.R. Bergen. The plenoptic function and the elements of early vision. In M. Landy and J. A. Movshon, editors, Computational Models of Visual Processing. MIT Press, 1991.

    Google Scholar 

  2. P.K. Agarwal and S. Sen. Randomized algorithms for geometric optimization problems. Handbook of Randomization (P. Pardalos, S. Rajasekaran, J. Reif, and J. Rolim, eds.), Kluwer Academic Publishers, to appear.

    Google Scholar 

  3. H. Bronnimann and M.T. Goodrich. Almost optimal set covers in finite VC-dimension. Discrete & Computational Geometry, 14(4):463–479, 1995.

    Article  MathSciNet  Google Scholar 

  4. G.S. Chirikjian and A.B. Kyatkin. Engineering Applications of Noncommuta-tive Harmonic Analysis: WIth Emphasis on Rotation and Motion Groups. CRC Press, 2000.

    Google Scholar 

  5. K. Daniilidis, A. Makadia, and T. Bülow. Image processing in catadioptric planes: Spatiotemporal derivatives and optical flow computation. In Workshop on Omnidirectional Vision, Copenhagen, June 22, pages 3–12, 2002.

    Google Scholar 

  6. J.R. Driscoll and D.M. Healy. Computing fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics, 15:202–250, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. O. Faugeras, Q.-T. Luong, and T. Papadopoulo. The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications. MIT Press, 2001.

    Google Scholar 

  8. C. Geyer and K. Daniilidis. Catadioptric projective geometry. International Journal of Computer Vision, 43:223–243, 2001.

    Article  Google Scholar 

  9. C. Geyer and K. Daniilidis. Properties of the catadioptric fundamental matrix. In Proc. Seventh European Conference on Computer Vision, pages 140–154, Copenhagen, Denmark, 2002.

    Google Scholar 

  10. R. Hartley and A. Zisserman. Multiple View Geometry. Cambridge Univ. Press, 2000.

    Google Scholar 

  11. V. Heine. Group Theory in Quantum Mechanics. Pergamon Press, Oxford, 1960.

    MATH  Google Scholar 

  12. I.V. Isler, S. Kannan, and K. Daniilidis. VC-dimension of exterior visibility of polyhedra. Technical Report MS-CIS-01-34, Computer and Information Science, University of Pennsylvania, 2001.

    Google Scholar 

  13. J. Matousek. Geometric computation and the art of sampling. In IEEE Symposium on Foundations of Computer Science, 1998.

    Google Scholar 

  14. L. Matthies. Stereo vision for planetary rovers: Stochastic modeling to near real-time implementation. International Journal of Computer Vision, 8:71–91, 1992.

    Article  Google Scholar 

  15. K. McIsaac and J. Ostrowski. Motion planning for dynamic eel-like robots. In IEEE Conf. on Robotics and Automation, 2000.

    Google Scholar 

  16. J. O’Rourke. Art Gallery Theorems And Algorithms. Oxford University Press, 1987.

    Google Scholar 

  17. J. Semple and G. Kneebone. Algebraic Projective Geometr. Oxford University Press, 1979.

    Google Scholar 

  18. P. Slavik. A tight analysis of the greedy algorithm for set cover. Journal of Algorithms, 25:237–254, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Valtr. Guarding galleries where no point sees a small area. Israel Journal of Mathematics, 104:1–16, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  20. V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daniilidis, K., Geyer, C., Isler, V., Makadia, A. (2003). Omnidirectional Sensing for Robot Control. In: Bicchi, A., Prattichizzo, D., Christensen, H.I. (eds) Control Problems in Robotics. Springer Tracts in Advanced Robotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36224-X_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-36224-X_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00251-2

  • Online ISBN: 978-3-540-36224-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics