Skip to main content

A New Model Reduction Method for Nonlinear Dynamical Systems Using Singular PDE Theory

  • Chapter
Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena

Summary

In the present research study a new approach to the problem of modelreduction for nonlinear dynamical systems is proposed. The formulation of the problem is conveniently realized through a system of singular quasi-linear invariance PDEs, and an explicit set of conditions for solvability is derived. In particular, within the class of real analytic solutions, the aforementioned set of conditions is shown to guarantee the existence and uniqueness of a locally analytic solution, which is then proven to represent the slow invariant manifold of the nonlinear dynamical system under consideration. As a result, an exact reduced-order model for the nonlinear system dynamics is obtained through the restriction of the original system dynamics on the aforementioned slow manifold. The local analyticity property of the solution’s graph that corresponds to the system’s slow invariant manifold enables the development of a series solution method, which allows the polynomial approximation of the “slow” system dynamics on the slow manifold up to the desired degree of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold: Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, Berlin Heidelberg New York 1983)

    MATH  Google Scholar 

  2. A. Astolfi, R. Ortega: Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Autom. Contr. 48, 590–606 (2003)

    Article  MathSciNet  Google Scholar 

  3. P.D. Christofides: Nonlinear and Robust Control of PDE Systems (Birkhauser, Boston, MA 2001)

    MATH  Google Scholar 

  4. R. Courant, D. Hilbert: Methods of Mathematical Physics, Volume II (John Wiley & Sons, New York 1962)

    MATH  Google Scholar 

  5. S.M. Cox, A.J. Roberts: Initial conditions for models of dynamical systems. Physica D 85, 126 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. L.C. Evans: Partial Differential Equations (American Mathematical Society, Providence, RI 1998)

    MATH  Google Scholar 

  7. C. Foias, M.S. Jolly, I.G. Kevrekidis, G.R. Sell, E.S. Titi: On the computation of inertial manifolds. Phys. Lett. A 131, 433 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  8. C. Foias, R. Sell, E.S. Titi: Exponential tracking and approximation of inertial manifolds for dissipative equations. J. Dynam. Diff. Equat 1, 199 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. F.R. Gantmacher: The Theory of Matrices (Chelsea Publishing Company, New York, 1960)

    MATH  Google Scholar 

  10. A.N. Gorban, I.V. Karlin: Methods of invariant manifolds and regularization of acoustic spectra. Transp. Theor. Stat. Phys. 23, 559 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. A.N. Gorban, I.V. Karlin, V.B. Zmievskii, S.V. Dymova: Reduced description in the reaction kinetics. Physica A 275, 361 (2000)

    Article  ADS  Google Scholar 

  12. A.N. Gorban, I.V. Karlin: Method of invariant manifold for chemical kinetics. Chem. Engn. Sci. 58, 4751 (2003)

    Article  Google Scholar 

  13. A.N. Gorban, I.V. Karlin, A.Y. Zinovyev: Constructive methods of invariant manifolds for kinetic problems. Phys. Reports 396, 197 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  14. A.N. Gorban, I.V. Karlin: Invariant Manifolds for Physical and Chemical Kinetics, Lecture Notes in Physics, 660 (Springer, Berlin Heidelberg New York 2005)

    MATH  Google Scholar 

  15. J. Guckenheimer, P.J. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Berlin Heidelberg New York 1983)

    MATH  Google Scholar 

  16. S Jin, M. Slemrod: Regularization of the Burnett equations for rapid granular flows via relaxation. Physica D 150, 207 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. T. Kaper, N. Koppel, C.K.R.T. Jones: Tracking invariant manifolds up to exponentially small errors. SIAM J. Math. Anal. 27, 558 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. N. Kazantzis: Singular PDEs and the problem of finding invariant manifolds for nonlinear dynamical systems. Phys. Lett. A 272, 257 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. N. Kazantzis, T. Good: Invariant manifolds and the calculation of the long-term asymptotic response of nonlinear processes using singular PDEs Comp. Chem. Eng 26, 999 (2002)

    Article  Google Scholar 

  20. P.V. Kokotovic, H.K. Khaliland, J.O. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design (Academic Press 1986)

    Google Scholar 

  21. A. Kumar, P.D. Christofides, P. Daoutidis: Singular perturbation modeling of nonlinear processes with nonexplicit time-scale multiplicity Chem. Engn. Sci. 53, 1491 (1998)

    Article  Google Scholar 

  22. G. Li, H. Rabitz: A general analysis of exact nonlinear lumping in chemical kinetics. Chem. Engn. Sci. 49, 343 (1994)

    Article  Google Scholar 

  23. A.M. Lyapunov: The General Problem of the Stability of Motion, (Taylor & Francis Ltd, London 1992).

    MATH  Google Scholar 

  24. G. Moore: Geometric methods for computing invariant manifolds. Appl. Numer. Math. 17, 319 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. A.J. Roberts: Low-dimensional modelling of dynamics via computer algebra. Comp. Phys. Commun. 100, 215 (1997)

    Article  MATH  ADS  Google Scholar 

  26. M.R. Roussel: Forced-convergence iterative schemes for the approximation of invariant manifolds. J. Math. Chem. 21, 385 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. M.R. Roussel, S.J. Fraser: Invariant manifold methods for metabolic model reduction. Chaos 11, 196 (2001)

    Article  MATH  ADS  Google Scholar 

  28. S.Y. Shvartsman, I.G. Kevrekidis: Nonlinear model reduction for control of distributed systems: A computer-assisted study. AICHE J. 44, 1579 (1998)

    Article  Google Scholar 

  29. S.Y. Shvartsman, C. Theodoropoulos, R. Rico-Martinez, I.G. Kevrekidis, E.S. Titi, T.J. Mountziaris: Order reduction for nonlinear dynamic models of distributed reacting systems. J. Proc. Contr. 10, 177 (2000)

    Article  Google Scholar 

  30. S. Wiggins: Introduction to Applied Nonlinear Dynamical Systems a nd Chaos (Springer, Berlin Heidelberg New York 1990)

    Google Scholar 

  31. A. Zagaris, H.G. Kaper, T.J. Kaper: Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonl. Sci. 14, 59 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. V.B. Zmievski, I.V. Karlin, M. Deville: The universal limit in dynamics of dilute polymeric solutions. Physica A 275, 152 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kazantzis, N., Kravaris, C. (2006). A New Model Reduction Method for Nonlinear Dynamical Systems Using Singular PDE Theory. In: Gorban, A.N., Kevrekidis, I.G., Theodoropoulos, C., Kazantzis, N.K., Öttinger, H.C. (eds) Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35888-9_1

Download citation

Publish with us

Policies and ethics