Skip to main content

Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Environment

  • Conference paper
Fluid-Structure Interaction

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 53))

Abstract

Despite their frequently supposed problems concerning the approximation of complicated and changing geometries, hierarchical Cartesian grids such as those defined by spacetrees have proven to be advantageous in many simulation scenarios. Probably their most important advantage is the simple, efficient, and flexible interface they offer and which allows for an elegant embedding of numerical simulations in some broader context, as it is encountered in a partitioned solution approach to coupled or multi-physics problems in general and to fluid-structure interaction in particular. For the latter, a flow solver, a structural solver, and a tool or library performing the data exchange and algorithmic interplay are required. Here, the main challenge still unsolved is to keep the balance between flexibility concerning the concrete codes used on the one hand and overall efficiency or performance on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, M., Bungartz, H.-J., Frank, A., and Mundani, R.-P.: Space Tree Structures for PDE Software. In: Sloot, P. M. A., Kenneth Tan, C. J., Dongarra, J. J., and Hoekstra, A. G. (eds.): Proceedings of the 2002 International Conference on Computational Science (2002) 662–671.

    Google Scholar 

  2. Becker-Lemgau, U., Hackenberg, M., Steckel, B., and Tilch, R.: Interpolation management in the GRISSLi coupling-interface for multidisciplinary simulations. In: Papailiou, K.D., Tsahalis, D., Periaux, J., Hirsch, C., and Pandol., M. (eds.): Computational Fluid Dynamics ’98, Proceedings of the 4th Eccomas Conference (1998) 1266–1271.

    Google Scholar 

  3. Bernert, K.: τ-Extrapolation—Theoretical Foundation, Numerical Experiment, and Application to the Navier-Stokes Equations. SIAM Journal on Scientific Computing 18 (1997) 460–478.

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanke, C.: Kontinuitätserhaltende Finite-Element-Diskretisierung der Navier- Stokes-Gleichungen. Diploma thesis, Institut für Informatik, TU München (2004).

    Google Scholar 

  5. Bletzinger, K.-U., Wüchner, R., and Kupzok, A.: Algorithmic Treatment of Shells and Free Form Membranes in FSI. In: Bungartz, H.-J., and Schäfer, M. (Eds.): Fluid-Structure Interaction, to appear in Springer’s LNCSE series.

    Google Scholar 

  6. Braess, D.: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics, Cambridge University Press (2001).

    Google Scholar 

  7. Bungartz, H.-J., Frank, A., Meier, F., Neunhoe.er, T., and Schulte, S.: Fluid structure interaction: 3d numerical simulation and visualization of a micropump. In: Bontoux, P., and Friedrich, R. (eds.): Computation and Visualization of three-Dimensional Vortical and Turbulent Flows (1998) 350–368.

    Google Scholar 

  8. Bungartz, H.-J., Frank, A., Meier, F., Neunhoe.er, T., and Schulte, S.: Efficient treatment of complicated geometries and moving interfaces for CFD problems. In: Bungartz, H.-J., Durst, F., and Zenger, Ch. (eds.): High Performance Scienti.c and Engineering Computing, LNCSE 8 (1999) 113–123.

    Google Scholar 

  9. Chorin, A. J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745–762.

    Article  MATH  MathSciNet  Google Scholar 

  10. Dieminger, N.: Kriterien für die Selbstadaption cache-e.zienter Mehrgitteralgorithmen. Diploma thesis, Institut für Informatik, TU München (2005).

    Google Scholar 

  11. Emans, M. and Zenger, C.: An efficient method for the prediction of the motion of individual bubbles. Int. J. of Computational Fluid Dynamics 19 (2005) 347- 356.

    Article  MATH  MathSciNet  Google Scholar 

  12. Farhat, C., Lesoinne, M., and Maman, N.: Mixed explicit/implicit time integration of coupled aeroelastic problems: Three-.eld formulation, geometric conservation and distributed solution. Int. J. Num. Meth. in Fluids 21 (1995) 807–835.

    Article  MATH  MathSciNet  Google Scholar 

  13. Fraunhofer SCAI. MpCCI: Multidisciplinary Simulations through Code Coupling, Version 3.0. MpCCI Manuals [online], URL: http://www.scai.fraunhofer. de/592.0.html [cited 19 Dez. 2005], (2005).

    Google Scholar 

  14. Geller, S., Krafczyk, M., and Tölke, J.: Lattice-Boltzmann Method on quadtree type grids for Fluid-Structure Interaction. In: Bungartz, H.-J., and Schäfer, M. (Eds.): Fluid-Structure Interaction, to appear in Springer’s LNCSE series.

    Google Scholar 

  15. Gresho, P. M. and Sani, R. L.: Incompressible flow and the finite element method, John Wiley&Sons Ltd, Chichester (1998).

    MATH  Google Scholar 

  16. Griebel, M.: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Habilitationsschrift, Teubner Skripten zur Numerik, Teubner, Stuttgart (1994).

    Google Scholar 

  17. Griebel, M., Dornseifer, Th., and Neunhoe.er, T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction, SIAM Philadelphia, (1997).

    Google Scholar 

  18. Griebel, M., and Zumbusch, G. W.: Parallel multigrid in an adaptive PDE solver based on hashing and space-filling curves. Parallel Computing 25 (1999) 827–843.

    Article  MATH  MathSciNet  Google Scholar 

  19. Griebel, M., and Zumbusch, G. W.: Hash based adaptive parallel multilevel methods with space-filling curves. In: Rollnik, H., and Wolf, D. (eds.): NIC Symposium 2001, NIC Series 9 (2002) 479–492.

    Google Scholar 

  20. Günther, F.: Eine cache-optimale Implementierung der Finite-Elemente- Methode. Doctoral thesis, Institut für Informatik, TU München (2004). 268 M. Brenk et al.

    Google Scholar 

  21. Günther, F., Krahnke, A., Langlotz, M., Mehl, M., Pögl, M., and Zenger, Ch.: On the Parallelization of a Cache-Optimal Iterative Solver for PDEs Based on Hierarchical Data Structures and Space-Filling Curves. In: Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th European PVM/MPI Users Group Meeting Budapest, Hungary, September 2004, LNCS 3241 (2004) 425–429.

    Google Scholar 

  22. Günther, F., Mehl, M., Pögl, M., and Zenger, Ch.: A cache-aware algorithm for PDEs on hierarchical data structures. In: Conference Proceedings PARA ’04, Kopenhagen, June 2004, LNCS 3732 (2005) 874–882.

    Google Scholar 

  23. Günther, F., Mehl, M., Pögl, M., and Zenger, Ch.: A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM Journal on Scientific Computing (in review).

    Google Scholar 

  24. Herder, W.: Lastverteilung und parallelisierte Erzeugung von Eingabedaten für ein paralleles Cache-optimales Finite-Element-Verfahren. Diploma thesis, Institut für Informatik, TU München (2005).

    Google Scholar 

  25. Kowarschik, M. and Weiß, C.: DiMEPACK - A Cache-Optimal Multigrid Library. In: Arabnia (ed.): Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Application (PDPTA 2001), Las Vegas, USA I (2001).

    Google Scholar 

  26. Krahnke, A.: Adaptive Verfahren höherer Ordnung auf cache-optimalen Datenstrukturen für dreidimensionale Probleme. Doctoral thesis, Institut für Informatik, TU München (2005).

    Google Scholar 

  27. Langlotz, M.: Parallelisierung eines Cache-optimalen 3D Finite-Element- Verfahrens. Diploma thesis, Institut für Informatik, TU München (2004).

    Google Scholar 

  28. Mehl, M., Weinzierl, T., and Zenger, Ch.: A cache-oblivious self-adaptive full multigrid method. In: Special issue Copper Mountain Conference on Multigrid Methods 2005, Numerical Linear Algebra with Applications, (to appear).

    Google Scholar 

  29. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 1.1. MPI Documents [online], URL: http://www.mpi-forum. org/docs/docs.html [cited 19 Dez. 2005], (1995).

    Google Scholar 

  30. Mundani, R.-P., and Bungartz, H.-J.: An Octree-Based Framework for Process Integration in Structural Engineering. In: Callaos, N., Lesso, W., and Sanchez, B. (eds.): Proceedings of the 8th World Multi-Conference on Systemics, Cybernetics and Informatics - Volume II (2004) 197–202.

    Google Scholar 

  31. Mundani, R.-P., Bungartz, H.-J., Rank, E., Romberg, R., and Niggl, A.: E.- cient Algorithms for Octree-Based Geometric Modelling. In: Topping, B.H.V. (ed.): Proceedings of the 9th International Conference on Civil and Structural Engineering Computing (2003).

    Google Scholar 

  32. Neckel, T.: Einfache 2D-Fluid-Struktur-Wechselwirkungen mit einer cacheoptimalen Finite-Element-Methode. Diploma thesis, Institut für Informatik, TU München (2005).

    Google Scholar 

  33. Oden, J. T., Patra, A., and Feng, Y.: Domain decomposition for adaptive hp finite element methods. In: Keyes, D. E. and Xu, J. (eds.): Domain decomposition methods in scientific and engineering computing; Proceedings of the 7th Int. Conf. on Domain Decomposition, Contemporary Mathematics 180 (1994) 203–214.

    Google Scholar 

  34. Patra, A. K., Long, J., and Laszlo., A.: Efficient Parallel Adaptive Finite Element Methods Using Self-Scheduling Data and Computations. In: Banerjee, P., Prasanna, V. K., and Sinha, B. P. (eds.): 6th Int. Conf. on High Performance Computing - HiPC’99, LNCS 1745 (1999) 359–363.

    Google Scholar 

  35. Piperno, S., Farhat, C., and Larrouturou, B.: Partitioned procedures for the transient solution of coupled aeroelastic problems. Computer Methods in Applied Mechanics and Engineering 124 (1995) 79–112.

    Article  MATH  MathSciNet  Google Scholar 

  36. Pögl, M.: Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens für große Probleme. Doctoral thesis, Institut für Informatik, TU München (2004).

    Google Scholar 

  37. Roberts, S., Klyanasundaram, S., Cardew-Hall, M., and Clarke, W.: A key based parallel adaptive re.nement technique for finite element methods. In: Noye, J., Teubner, M., and Gill, A. (eds.): Proceedings Computational Techniques and Applications: CTAC ’97 (1998) 577–584.

    Google Scholar 

  38. Sagan, H.: Space-Filling Curves. Springer, New York (1994).

    MATH  Google Scholar 

  39. Scholz, D., Kollmannsberger, S., Düster, A., and Rank, E.: Thin solids for Fluid-Structure Interaction. In: Bungartz, H.-J., and Schäfer, M. (Eds.): Fluid- Structure Interaction, to appear in Springer’s LNCSE series.

    Google Scholar 

  40. Szabo, B., Düster, A., and Rank, E.: The p-version of the finite element method. In: Stein, E., de Borst, R., and Hughes, T.J.R. (eds.): Encyclopedia of Computational Mechanics, John Wiley&Sons (2004).

    Google Scholar 

  41. Hron, J., and Turek, S.: Proposal for numerical benchmarking of Fluid- Structure Interaction between elastic object and laminar incompressible flow. In: Bungartz, H.-J., and Schäfer, M. (Eds.): Fluid-Structure Interaction, to appear in Springer’s LNCSE series.

    Google Scholar 

  42. Turek, S., and Schäfer, M.: Benchmark computations of laminar flow around cylinder. In: Hirschel, E. H. (ed.): Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics 52 (1996).

    Google Scholar 

  43. Verstappen, R.W.C.P., and Veldman A.E.P.: Symmetry-Preserving Discretization of Turbulent Channel Flow. In: Breuer, M., Durst, F., and Zenger, Ch. (eds.): High Performance Scientific and Engineering Computing (2001) 107- 114.

    Google Scholar 

  44. Weinzierl, T.: Eine cache-optimale Implementierung eines Navier-Stokes Lösers unter besonderer Berücksichtigung physikalischer Erhaltungssätze. Diploma thesis, Institut für Informatik, TU München (2005).

    Google Scholar 

  45. Zumbusch, G. W.: Adaptive Parallel Multilevel Methods for Partial Differential Equations. Habilitationsschrift, Universität Bonn (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Brenk, M., Bungartz, HJ., Mehl, M., Neckel, T. (2006). Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Environment. In: Bungartz, HJ., Schäfer, M. (eds) Fluid-Structure Interaction. Lecture Notes in Computational Science and Engineering, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34596-5_10

Download citation

Publish with us

Policies and ethics