Skip to main content

Performance of Distributed GAs on DNA Fragment Assembly

  • Chapter
Parallel Evolutionary Computations

Part of the book series: Studies in Computational Intelligence ((SCI,volume 22))

Abstract

In this work, we present results on analyzing the behavior of a parallel distributed genetic algorithm over different LAN technologies. Our goal is to offer a study on the potential impact in the search mechanics when shifting between LANs. We will address three LANs: a Fast Ethernet network, a Gigabit Ethernet network, and a Myrinet network. We also study the importance of several parameters of the migration policy. The whole analysis will use the DNA fragment assembly problem to show the actual power and utility of the proposed distributed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Alba. Parallel evolutionary algorithms can achieve super-linear performace. Information Processing Letters, 82:7–13, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley, 2005.

    Google Scholar 

  3. E. Alba, C. Cotta, M. Díaz, E. Soler, and J.M. Troya. MALLBA: Middleware for a geographically distributed optimization system. Technical report, Dpto. Lenguajes y Ciencias de la Computatión, Universidad de Malága (internal report), 2000.

    Google Scholar 

  4. E. Alba, F. Luna, and A. J. Nebro. Advances in parallel heterogeneous genetic algorithms for continuous optimization. International Journal of Applied Mathematics and Computer Science, 14(3):317–333, 2004.

    MATH  MathSciNet  Google Scholar 

  5. E. Alba and the MALLBA Group. MALLBA: A library of skeletons for combinatorial optimisation. In R. Feldmann B. Monien, editor, Proceedings of the Euro-Par, volume 2400 of LNCS, pages 927–932, Paderborn (GE), 2002. Springer–Verlag.

    Google Scholar 

  6. E. Alba and M. Tomassini. Parallelism and Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation, 6(5):443–462, October 2002.

    Article  Google Scholar 

  7. C.F. Allex. Computational Methods for Fast and Accurate DNA Fragment Assembly. UW technical report CS-TR-99–1406, Department of Computer Sciences, University of Wisconsin-Madison, 1999.

    Google Scholar 

  8. N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J. Seizovic, and W. Su. Myrinet A Gigabit Per Second Local Area Network. IEEE Micro, pages 29–36, 1995.

    Google Scholar 

  9. E. Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Press, 2000.

    Google Scholar 

  10. M.L. Engle and C. Burks. Artificially generated data sets for testing DNA fragment assembly algorithms. Genomics, 16, 1993.

    Google Scholar 

  11. Message Passing Interface Forum. MPI: A message–passing interface standard. Technical Report UT-CS-94–230, 1994.

    Google Scholar 

  12. D.E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, pages 69–93. Morgan Kaufmann, 1991.

    Google Scholar 

  13. S. Kim. A structured Pattern Matching Approach to Shotgun Sequence Assembly. PhD thesis, Computer Science Department, The University of Iowa, 1997.

    Google Scholar 

  14. C. Notredame and D.G. Higgins. SAGA: sequence alignment by genetic algorithm. Nucleic Acids Research, 24:1515–1524, 1996.

    Article  Google Scholar 

  15. R. Parsons, S. Forrest, and C. Burks. Genetic algorithms, operators, and DNA fragment assembly. Machine Learning, 21:11–33, 1995.

    Google Scholar 

  16. R. Parsons and M.E. Johnson. A case study in experimental design applied to genetic algorithms with applications to DNA sequence assembly. American Journal of Mathematical and Management Sciences, 17:369–396, 1995.

    Google Scholar 

  17. P.A. Pevzner. Computational molecular biology: An algorithmic approach. The MIT Press, London, 2000.

    Google Scholar 

  18. J. Setubal and J. Meidanis. Introduction to Computational Molecular Biology, chapter 4 - Fragment Assembly of DNA, pages 105–139. University of Campinas, Brazil, 1997.

    Google Scholar 

  19. D. Whitely. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 116–121. Morgan Kaufmann, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Alba, E., Luque, G. (2006). Performance of Distributed GAs on DNA Fragment Assembly. In: Nedjah, N., Mourelle, L.d., Alba, E. (eds) Parallel Evolutionary Computations. Studies in Computational Intelligence, vol 22. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32839-4_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-32839-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32837-7

  • Online ISBN: 978-3-540-32839-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics