Skip to main content

Reovirus Structure and Morphogenesis

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 309))

Abstract

Assembly of a mature infectious virion from component parts is one of the last steps in the replicative cycle of most viruses. Recent advances in delineating aspects of this process for the mammalian orthoreoviruses (MRV), nonenveloped viruses composed of a genome of ten segments of double-stranded RNA enclosed in two concentric icosahedral protein capsids, are discussed. Analyses of temperature-sensitive (ts) assembly-defective reovirus mutants have been used to better understand requirements for viral inclusion formation and capsid morphogenesis. Newly determined high-resolution structures of virtually all MRV proteins, combined with complete MRV genomic sequence information and elucidation of sequence lesions in tsmutants, is now providing a context formolecularly understanding interactions that promote, or abrogate, reovirus capsid assembly. Additional advances in understanding required signals for whole genome construction fromsets of the ten individual genes, and in transcapsidation of subviral particles with engineered outer capsid proteins, provide additional molecular genetic understanding of reovirus protein structure-function and morphogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed R, Chakraborty PR, Fields BN (1980a) Genetic variation during lytic reovirus infection: high-passage stocks of wild-type reovirus contain temperature-sensitive mutants. J Virol 34:285–287

    PubMed  CAS  Google Scholar 

  • Ahmed R, Chakraborty PR, Graham AF, Ramig RF, Fields BN (1980b) Genetic variation during persistent reovirus infection: presence of extragenically suppressed temperature-sensitive lesions in wild-type virus isolated from persistently infected L cells. J Virol 34:383–389

    PubMed  CAS  Google Scholar 

  • Antczak JB, Joklik WK (1992) Reovirus genome segment assortment into progeny genomes studied by the use of monoclonal antibodies directed against reovirus proteins. Virology 187:760–776

    PubMed  CAS  Google Scholar 

  • Attoui H, Biagini P, Stirling J, Mertens PPC, Cantaloube JF, Meyer A, de Micco P, de Lamballerie X (2001) Sequence characterization of Ndelle virus genome segments 1, 5, 7, 8, and 10: evidence for reassignment to the genus Orthoreovirus, family Reoviridae. Biochem Biophys Res Commun 287:583–588

    PubMed  CAS  Google Scholar 

  • Attoui H, Fang Q, Jaafar FM, Cantaloube JF, Biagini P, de Micco P, deLamballerie X (2002) Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of golden shiner reovirus, grass carp reovirus, striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae). J Gen Virol 83:1941–1951

    PubMed  CAS  Google Scholar 

  • Baer GS, Dermody TS (1997) Mutations in reovirus outer-capsid protein sigma3 selected during persistent infections of L cells confer resistance to protease inhibitor E64. J Virol 71:4921–4928

    PubMed  CAS  Google Scholar 

  • Bancroft CT, Parslow TG (2002) Evidence for segment-nonspecific packaging of the influenza A virus genome. J Virol 76:7133–7139

    PubMed  CAS  Google Scholar 

  • Bartlett JA, Joklik WK (1988) The sequence of the reovirus serotype 3 L3 genome segment which encodes the major core protein lambda 1. Virology 167:31–37

    PubMed  CAS  Google Scholar 

  • Bartlett NM, Gillies SC, Bullivant S, Bellamy AR (1974) Electron microscopy study of reovirus reaction cores. J Virol 14:315–326

    PubMed  CAS  Google Scholar 

  • Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS (2001) Junction adhesion molecule is a receptor for reovirus. Cell 104:441–451

    PubMed  CAS  Google Scholar 

  • Bass DM, Bodkin D, Dambrauskas R, Trier JS, Fields BN, Wolf JL (1990) Intraluminal proteolytic activation plays an important role in replication of type 1 reovirus in the intestines of neonatal mice. J Virol 64:1830–1833

    PubMed  CAS  Google Scholar 

  • Beattie E, Denzler KL, Tartaglia J, Perkus ME, Paoletti E, Jacobs BL (1995) Reversal of the interferon-sensitive phenotype of a vaccinia virus lacking E3L by expression of the reovirus S4 gene. J Virol 69:499–505

    PubMed  CAS  Google Scholar 

  • Becker MM, Goral MI, Hazelton PR, Baer GS, Rodgers SE, Brown EG, Coombs KM, Dermody TS (2001) Reovirus sigma NS protein is required for nucleation of viral assembly complexes and formation of viral inclusions. J Virol 75:1459–1475

    PubMed  CAS  Google Scholar 

  • Becker MM, Peters TR, Dermody TS (2003) Reovirus sigma NS and mu NS proteins form cytoplasmic inclusion structures in the absence of viral infection. J Virol 77:5948–5963

    PubMed  CAS  Google Scholar 

  • Bergeron J, Mabrouk T, Garzon S, Lemay G (1998) Characterization of the thermosensitive ts453 reovirusmutant: increased dsRNA binding of sigma 3 protein correlates with interferon resistance. Virology 246:199–210

    PubMed  CAS  Google Scholar 

  • Bisaillon M, Lemay G (1997a) Characterization of the reovirus lambda1 protein RNA 5’-triphosphatase activity. J Biol Chem 272:29954–29957

    PubMed  CAS  Google Scholar 

  • Bisaillon M, Lemay G (1997b) Molecular dissection of the reovirus lambda1 protein nucleic acids binding site. Virus Res 51:231–237

    PubMed  CAS  Google Scholar 

  • Bisaillon M, Bergeron J, Lemay G (1997) Characterization of the nucleoside triphosphate phosphohydrolase and helicase activities of the reovirus lambda1 protein. J Biol Chem 272:18298–18303

    PubMed  CAS  Google Scholar 

  • Black LW, Showe MK, Steven AC (1994) Morphogenesis of the T4 head. In: Karam JD, Drake JW, Kreuzer KN, Mosig G, Hall D, Eiserling FA, BlackL W, Kutter E, Spîcer E, Carlson K, Miller ES (eds) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 218–258

    Google Scholar 

  • Bodkin DK, Nibert ML, Fields BN (1989) Proteolytic digestion of reovirus in the intestinal lumens of neonatal mice. J Virol 63:4676–4681

    PubMed  CAS  Google Scholar 

  • Breun LA, Broering TJ, McCutcheon AM, Harrison SJ, Luongo CL, Nibert ML (2001) Mammalian reovirus L2 gene and lambda2 core spike protein sequences and whole-genome comparisons of reoviruses type 1 Lang, type 2 Jones, and type 3 Dearing. Virology 287:333–348

    PubMed  CAS  Google Scholar 

  • Broering TJ, Parker JS, Joyce PL, Kim J, Nibert ML (2002) Mammalian reovirus nonstructural protein μNS forms large inclusions and colocalizes with reovirus microtubule-associated protein μ2 in transfected cells. J Virol 76:8285–8297

    PubMed  CAS  Google Scholar 

  • Broering TJ, Kim J, Miller CL, Piggott CDS, Dinoso JB, Nibert ML, Parker JSL (2004) Reovirus nonstructural protein mu NS recruits viral core surface proteins and entering core particles to factory-like inclusions. J Virol 78:1882–1892

    PubMed  CAS  Google Scholar 

  • Broering TJ, Arnold MM, Miller CL, Hurt JA, Joyce PL, Nibert ML (2005) Carboxyl-proximal regions of reovirus nonstructural protein mu NS necessary and sufficient for forming factory-like inclusions. J Virol 79:6194–6206

    PubMed  CAS  Google Scholar 

  • Butler PJ (1999) Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Phil Trans R Soc Lond B Biol Sci 354:537–550

    CAS  Google Scholar 

  • Canning WM, Fields BN (1983) Ammoniumchloride prevents lytic growth of reovirus and helps to establish persistent infection in mouse L cells. Science 219:987–988

    PubMed  CAS  Google Scholar 

  • Chandran K, Nibert ML (1998) Protease cleavage of reovirus capsid protein mu1/mu1C is blocked by alkyl sulfate detergents, yielding a new type of infectious subvirion particle. J Virol 72:467–475

    PubMed  CAS  Google Scholar 

  • Chandran K, Walker SB, Chen Y, Contreras CM, Schiff LA, Baker TS, Nibert ML (1999) In vitro recoating of reovirus cores with baculovirus-expressed outercapsid proteins mu1 and sigma3. J Virol 73:3941–3950

    PubMed  CAS  Google Scholar 

  • Chandran K, Zhang X, Olson NH, Walker SB, Chappell JD, Dermody TS, Baker TS, Nibert ML (2001) Complete in vitro assembly of the reovirus outer capsid produces highly infectious particles suitable for genetic studies of the receptor-binding protein. J Virol 75:5335–5342

    PubMed  CAS  Google Scholar 

  • Chandran K, Farsetta DL, Nibert ML (2002) Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein mu 1 mediates membrane disruption. J Virol 76:9920–9933

    PubMed  CAS  Google Scholar 

  • Chandran K, Parker JSL, Ehrlich M, Kirchhausen T, Nibert ML (2003) The delta region of outer-capsid protein mu 1 undergoes conformational change and release from reovirus particles during cell entry. J Virol 77:13361–13375

    PubMed  CAS  Google Scholar 

  • Chang CT, Zweerink HJ (1971) Fate of parental reovirus in infected cell. Virology 46:544–555

    PubMed  CAS  Google Scholar 

  • Charpilienne A, Nejmeddine M, Berios M, Parez N, Neumann E, Hewat E, Trugnan G, Cohen J (2001) Individual rotavirus-like particles containing 120 molecules of fluorescent protein are visible in living cells. J Biol Chem 276:29361–29367

    PubMed  CAS  Google Scholar 

  • Charpilienne A, Lepault J, Rey F, Cohen J (2002) Identification of rotavirus VP6 residues located at the interface with VP2 that are essential for capsid assembly and transcriptase activity. J Virol 76:7822–7831

    PubMed  CAS  Google Scholar 

  • Chen D, Ramig RF (1993a) Rescue of infectivity by in vitro transcapsidation of rotavirus single-shelled particles. Virology 192:422–429

    PubMed  CAS  Google Scholar 

  • Chen D, Ramig RF (1993b) Rescue of infectivity by sequential in vitro transcapsidation of rotavirus core particles with inner capsid and outer capsid proteins. Virology 192:743–751

    Google Scholar 

  • Chappell JD, Prota AE, Dermody TS, Stehle T (2002) Crystal structure of reovirus attachment protein sigma 1 reveals evolutionary relationship to adenovirus fiber. EMBO J 21:1–11

    PubMed  CAS  Google Scholar 

  • Chiu WL, Szajner P, Moss B, Chang W (2005) Effects of a temperature sensitivity mutation in the J1R protein component of a complex required for vaccinia virus assembly. J Virol 79:8046–8056

    PubMed  CAS  Google Scholar 

  • Cleveland DR, Zarbl H, Millward S (1986) Reovirus guanylyltransferase is L2 gene product lambda 2. J Virol 60:307–311

    PubMed  CAS  Google Scholar 

  • Coombs KM (1996) Identification and characterization of a double-stranded RNA- reovirus temperature-sensitive mutant defective in minor core protein mu2. J Virol 70:4237–4245

    PubMed  CAS  Google Scholar 

  • Coombs KM (1998a) Stoichiometry of reovirus structural proteins in virus, ISVP, and core particles. Virology 243:218–228

    PubMed  CAS  Google Scholar 

  • Coombs KM (1998b) Temperature-sensitive mutants of reovirus. Curr Top Microbiol Immunol 233:69–107

    PubMed  CAS  Google Scholar 

  • Coombs KM, Mak SC, Petrycky-Cox LD (1994) Studies of the major reovirus core protein sigma 2: reversion of the assembly-defective mutant tsC447 is an intragenic process and involves back mutation of Asp-383 to Asn. J Virol 68:177–186

    PubMed  CAS  Google Scholar 

  • Creighton TE (1990) Protein folding. Biochem J 270:1–16

    PubMed  CAS  Google Scholar 

  • Cross RK, Fields BN (1972) Temperature-sensitive mutants of reovirus type 3: studies on the synthesis of viral RNA. Virology 50:799–809

    PubMed  CAS  Google Scholar 

  • Dales S (1965) Replication of animal viruses as studied by electron microscopy. Am J Med 38:699–715

    PubMed  CAS  Google Scholar 

  • Danis C, Garzon S, Lemay G (1992) Further characterization of the ts453 mutant of mammalian orthoreovirus serotype 3 and nucleotide sequence of the mutated S4 gene. Virology 190:494–498

    PubMed  CAS  Google Scholar 

  • DeLano WL (2004) The PyMOL molecular graphics system. (http://www.pymol.org)

    Google Scholar 

  • Denzler KL, Jacobs BL (1994) Site-directed mutagenic analysis of reovirus sigma 3 protein binding to dsRNA. Virology 204:190–199

    PubMed  CAS  Google Scholar 

  • Dermody TS, Nibert ML, Bassel-Duby R, Fields BN (1990) Sequence diversity in S1 genes and S1 translation products of 11 serotype 3 reovirus strains. J Virol 64:4842–4850

    PubMed  CAS  Google Scholar 

  • Dermody TS, Schiff LA, Nibert ML, Coombs KM, Fields BN (1991) The S2 gene nucleotide sequences of prototype strains of the three reovirus serotypes: characterization of reovirus core protein sigma 2. J Virol 65:5721–5731

    PubMed  CAS  Google Scholar 

  • Drayna D, Fields BN (1982a) Activation and characterization of the reovirus transcriptase: genetic analysis. J Virol 41:110–118

    PubMed  CAS  Google Scholar 

  • Drayna D, Fields BN (1982b) Biochemical studies on the mechanism of chemical and physical inactivation of reovirus. J Gen Virol 63:161–170

    PubMed  CAS  Google Scholar 

  • Drayna D, Fields BN (1982c) Genetic studies on the mechanism of chemical and physical inactivation of reovirus. J Gen Virol 63:149–159

    PubMed  Google Scholar 

  • Dryden KA, Wang G, Yeager M, Nibert ML, Coombs KM, Furlong DB, Fields BN, Baker TS (1993) Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol 122:1023–1041

    PubMed  CAS  Google Scholar 

  • Dryden KA, Farsetta DL, Wang G, Keegan JM, Fields BN, Baker TS, Nibert ML (1998) Internal structures containing transcriptase-related proteins in top component particles of mammalian orthoreovirus. Virology 245:33–46

    PubMed  CAS  Google Scholar 

  • Duncan R (1999) Extensive sequence divergence and phylogenetic relationships between the fusogenic and nonfusogenic orthoreoviruses: a species proposal. Virology 260:316–328

    PubMed  CAS  Google Scholar 

  • Ebert DH, Wetzel JD, Brumbaugh DE, Chance SR, Stobie LE, Baer GS, Dermody TS (2001) Adaptation of reovirus to growth in the presence of protease inhibitor E64 segregates with a mutation in the carboxy terminus of viral outer-capsid protein sigma3. J Virol 75:3197–3206

    PubMed  CAS  Google Scholar 

  • Ebert DH, Deussing J, Peters C, Dermody TS (2002) Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J Biol Chem 277:24609–24617

    PubMed  CAS  Google Scholar 

  • Enami M, Sharma G, Benham C, Palese P (1991) An influenza virus containing 9 different RNA segments. Virology 185:291–298

    PubMed  CAS  Google Scholar 

  • Estes MK (2001) Rotaviruses and their replication. In: Knipe DM, Howley M, Griffen DE et al (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1747–1785

    Google Scholar 

  • Ewing J (1905) The structure of vaccine bodies in isolated cells. J Med Res 13:233–251

    Google Scholar 

  • Fausnaugh J, Shatkin AJ (1990) Active site localization in a viral mRNA capping enzyme. J Biol Chem 265:7669–7672

    PubMed  CAS  Google Scholar 

  • Fields BN, Joklik WK (1969) Isolation and preliminary genetic and biochemical characterization of temperature-sensitive mutants of reovirus. Virology 37:335–342

    PubMed  CAS  Google Scholar 

  • Fields BN, Raine CS, Baum SG (1971) Temperature-sensitive mutants of reovirus type 3: defects in viral maturation as studied by immunofluorescence and electron microscopy. Virology 43:569–578

    PubMed  CAS  Google Scholar 

  • Fields BN, Laskov R, Scharff MD (1972) Temperature-sensitive mutants of reovirus type 3: studies on the synthesis of viral peptides. Virology 50:209–215

    PubMed  CAS  Google Scholar 

  • Fraser RD, Furlong DB, Trus BL, Nibert ML, Fields BN, Steven AC (1990) Molecular structure of the cell-attachment protein of reovirus: correlation of computer processed electron micrographs with sequence-based predictions. J Virol 64:2990–3000

    PubMed  CAS  Google Scholar 

  • Fujii Y, Goto H, Watanabe T, Yoshida T, Kawaoka T (2003) Selective incorporation of influenza virus RNA segments into virions. Proc Natl Acad Sci U S A 100:2002–2007

    PubMed  CAS  Google Scholar 

  • Furuichi Y, Morgan M, Muthukrishnan S, Shatkin AJ (1975) Reovirus messenger RNA contains a methylated, blocked 5′-terminal structure: m-7G(5′)ppp(5′)G-MpCp-. Proc Natl Acad Sci U S A 72:362–366

    PubMed  CAS  Google Scholar 

  • Giantini M, Shatkin AJ (1989) Stimulation of chloramphenicol acetyltransferase mRNA translation by reovirus capsid polypeptide sigma 3 in cotransfected COS cells. J Virol 63:2415–2421

    PubMed  CAS  Google Scholar 

  • Giantini M, Seliger LS, Furuichi Y, Shatkin AJ (1984) Reovirus type 3 genome segment S4: nucleotide sequence of the gene encoding a major virion surface protein. J Virology 52:984–987

    PubMed  CAS  Google Scholar 

  • Gillian AL, Nibert ML (1998) Amino terminus of reovirus nonstructural protein sigma NS is important for ssRNA binding and nucleoprotein complex formation. Virology 240:1–11

    PubMed  CAS  Google Scholar 

  • Gillian AL, Schmechel SC, Livny J, Schiff LA, Nibert ML (2000) Reovirus protein sigma NS binds in multiple copies to single-stranded RNA and shares properties with single-stranded DNA binding proteins. J Virol 74:5939–5948

    PubMed  CAS  Google Scholar 

  • Golden JW, Bahe JA, Lucas WT, Nibert ML, Schiff LA (2004) Cathepsin S supports acid-independent infection by some reoviruses. J Biol Chem 279:8547–8557

    PubMed  CAS  Google Scholar 

  • Gomatos PJ, Stamatos NM, Sarkar NH (1980) Small reovirus-specific particle with polycytidylate-dependent RNA polymerase activity. J Virol 36:556–565

    PubMed  CAS  Google Scholar 

  • Gomatos PJ, Prakash O, Stamatos NM (1981) Small reovirus particle composed solely of sigma NS with specificity for binding different nucleic acids. J Virol 39:115–124

    PubMed  CAS  Google Scholar 

  • Guarnieri G (1893) Recherches sur la pathologie et étiologie de l’infection vaccinique et varioleuse. Arch Ital Biol 19:195–209

    Google Scholar 

  • Haller BL, Barkon ML, Vogler GP, Virgin HW (1995) Genetic mapping of reovirus virulence and organ tropism in severe combined immunodeficient mice: organspecific virulence genes. J Virol 69:357–364

    PubMed  CAS  Google Scholar 

  • Harrison SJ, Farsetta DL, Kim J, Noble S, Broering TJ, Nibert ML (1999) Mammalian reovirus L3 gene sequences and evidence for a distinct amino-terminal region of the lambda1 protein. Virology 258:54–64

    PubMed  CAS  Google Scholar 

  • Hazelton PR, Coombs KM (1995) The reovirus mutant tsA279 has temperature-sensitive lesions in the M2 and L2 genes: the M2 gene is associated with decreased viral protein production and blockade in transmembrane transport. Virology 207:46–58

    PubMed  CAS  Google Scholar 

  • Hazelton PR, Coombs KM (1999) The reovirus mutant tsA279 L2 gene is associated with generation of a spikeless core particle: implications for capsid assembly. J Virol 73:2298–2308

    PubMed  CAS  Google Scholar 

  • Huismans H, Joklik WK (1976) Reovirus-coded polypeptides in infected cells: isolation of two native monomeric polypeptides with affinity for single-stranded and double-stranded RNA, respectively. Virology 70:411–424

    PubMed  CAS  Google Scholar 

  • Hundley F, Biryahwaho B, Gow M, Desselberger U (1985) Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. Virology 143:88–103

    PubMed  CAS  Google Scholar 

  • Ikegami N, Gomatos PJ (1968) Temperature-sensitive conditional-lethal mutants of reovirus 3. I. Isolation and characterization. Virology 36:447–458

    PubMed  CAS  Google Scholar 

  • Imani F, Jacobs BL (1988) Inhibitory activity for the interferon-induced protein kinase is associated with the reovirus serotype 1 sigma 3 protein. Proc Natl Acad Sci U S A 85:7887–7891

    PubMed  CAS  Google Scholar 

  • Ito Y, Joklik WK (1972) Temperature-sensitive mutants of reovirus. I. Patterns of gene expression by mutants of groups C, D, and E. Virology 50:189–201

    PubMed  CAS  Google Scholar 

  • Jané-Valbuena J, Nibert ML, Spencer SM, Walker SB, Baker TS, Chen Y, Centonze VE, Schiff LA (1999) Reovirus virion-like particles obtained by recoating infectious subvirion particles with baculovirus-expressed sigma3 protein: an approach for analyzing sigma3 functions during virus entry. J Virol 73:2963–2973

    PubMed  Google Scholar 

  • Jané-Valbuena J, Breun LA, Schiff LA, Nibert ML (2002) Sites and determinants of early cleavages in the proteolytic processing pathway of reovirus surface protein sigma 3. J Virol 76:5184–5197

    PubMed  Google Scholar 

  • Jayaram H, Estes MK, Prasad BVV (2004) Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res 101:67–81

    PubMed  CAS  Google Scholar 

  • Jayasuriya AK, Nibert ML, Fields BN (1988) Complete nucleotide sequence of the M2 gene segment of reovirus type 3 Dearing and analysis of its protein product mu 1. Virology 163:591–602

    PubMed  CAS  Google Scholar 

  • Joklik WK (1983) The reoviridae. Plenum Press, New York

    Google Scholar 

  • Joklik WK (1985) Recent progress in reovirus research. Annu Rev Genet 19:537–575

    PubMed  CAS  Google Scholar 

  • Joklik WK (1998) Assembly of the reovirus genome. Curr Top Microbiol Immunol 233:57–68

    PubMed  CAS  Google Scholar 

  • Joklik WK, Roner MR (1995) What reassorts when reovirus genome segments reassort? J Biol Chem 270:4181–4184

    PubMed  CAS  Google Scholar 

  • Joklik WK, Roner MR (1996) Molecular recognition in the assembly of the segmented reovirus genome. Prog Nucleic Acids Res Mol Biol 53:249–281

    CAS  Google Scholar 

  • Kainov DE, Butcher SJ, Bamford DH, Tuma R (2003) Conserved intermediates on the assembly pathway of double-stranded RNA bacteriophages. J Mol Biol 328:791–804

    PubMed  CAS  Google Scholar 

  • Kapikian AZ, Hoshino Y, Chanock RM (2001) Rotaviruses. In: Knipe DM, Howley M, Griffen DE et al (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1787–1833

    Google Scholar 

  • Kedl R, Schmechel S, Schiff L (1995) Comparative sequence analysis of the reovirus S4 genes from 13 serotype 1 and serotype 3 field isolates. J Virol 69:552–559

    PubMed  CAS  Google Scholar 

  • Kim J, Zhang X, Centonze VE, Bowman VD, Noble S, Baker TS, Nibert ML (2002) The hydrophilic amino-terminal arm of reovirus core shell protein lambda1 is dispensable for particle assembly. J Virol 76:12211–12222

    PubMed  CAS  Google Scholar 

  • Kim J, Tao Y, Reinisch KM, Harrison SC, Nibert ML (2004) Orthoreovirus and aquareovirus core proteins: conserved enzymatic surfaces, but not protein-protein interfaces. Virus Res 101:15–28

    PubMed  CAS  Google Scholar 

  • Koonin EV, Gorbalenya AE, Chumakov KM (1989) Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases. FEBS Lett 252:42–46

    PubMed  CAS  Google Scholar 

  • Lamb RA, Krug RM (2001) Orthomyxoviridae: the viruses and their replication. In: Knipe DM, Howley M, Griffen DE et al (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1487–1531

    Google Scholar 

  • Larson SM, Antczak JB, Joklik WK (1994) Reovirus exists in the form of 13 particle species that differ in their content of protein sigma 1. Virology 201:303–311

    PubMed  CAS  Google Scholar 

  • Lee PW, Hayes EC, Joklik WK (1981a) Characterization of anti-reovirus immunoglobulins secreted by cloned hybridoma cell lines. Virology 108:134–146

    PubMed  CAS  Google Scholar 

  • Lee PW, Hayes EC, Joklik WK (1981b) Protein sigma 1 is the reovirus cell attachment protein. Virology 108:156–163

    PubMed  CAS  Google Scholar 

  • Lemay G, Danis C (1994) Reovirus lambda 1 protein: affinity for double-stranded nucleic acids by a small amino-terminal region of the protein independent from the zinc finger motif. J Gen Virol 75:3261–3266

    PubMed  CAS  Google Scholar 

  • Lemieux R, Zarbl H, Millward S (1984) mRNA discrimination in extracts from uninfected and reovirus-infected L-cells. J Virol 51:215–222

    PubMed  CAS  Google Scholar 

  • Lemieux R, Lemay G, Millward S (1987) The viral protein sigma 3 participates in translation of late viral mRNA in reovirus-infected L cells. J Virol 61:2472–2479

    PubMed  CAS  Google Scholar 

  • Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC (1991) Structure of simian virus-40 at 3.8 Å resolution. Nature 354:278–284

    PubMed  CAS  Google Scholar 

  • Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC (2002) Structure of the reovirus membrane-penetration protein, mu1, in a complex with is protector protein, Sigma3. Cell 108:283–295

    PubMed  CAS  Google Scholar 

  • Lucia-Jandris P, Hooper JW, Fields BN (1993) Reovirus M2 gene is associated with chromium release from mouse L cells. J Virol 67:5339–5345

    PubMed  CAS  Google Scholar 

  • Luftig RB, Kilham SS, Hay AJ, Zweerink HJ, Joklik WK(1972) An ultrastructural study of virions and cores of reovirus type 3. Virology 48:170–181

    PubMed  CAS  Google Scholar 

  • Luongo CL (2002) Mutational analysis of a mammalian reovirus mRNA capping enzyme. Biochem Biophys Res Commun 291:932–938

    PubMed  CAS  Google Scholar 

  • Luongo CL, Contreras CM, Farsetta DL, Nibert ML (1998) Binding site for S-adenosyl-L-methionine in a central region of mammalian reovirus lambda2 protein. Evidence for activities in mRNA cap methylation. J Biol Chem 273:23773–23780

    PubMed  CAS  Google Scholar 

  • Luongo CL, Reinisch KM, Harrison SC, Nibert ML (2000) Identification of the guanylyltransferase region and active site in reovirus mRNA capping protein lambda2. J Biol Chem 275:2804–2810

    PubMed  CAS  Google Scholar 

  • Luongo CL, Zhang X, Walker SB, Chen Y, Broering TJ, Farsetta DL, Bowman VD, Baker TS, Nibert ML (2002) Loss of activities for mRNA synthesis accompanies loss of lambda2 spikes from reovirus cores: an effect of lambda2 on lambda1 shell structure. Virology 296:24–38

    PubMed  CAS  Google Scholar 

  • Lymperopoulos K, Wirblich C, Brierley I, Roy P (2003) Sequence specificity in the interaction of Bluetongue virus non-structural protein 2 (NS2) with viral RNA. J Biol Chem 278:31722–31730

    PubMed  CAS  Google Scholar 

  • Mabrouk T, Lemay G (1994) Mutations in a CCHC zinc-binding motif of the reovirus sigma 3 protein decrease its intracellular stability. J Virol 68:5287–5290

    PubMed  CAS  Google Scholar 

  • Mabrouk T, Danis C, Lemay G (1995) Two basic motifs of reovirus sigma 3 protein are involved in double-stranded RNA binding. Biochem Cell Biol 73:137–145

    PubMed  CAS  Google Scholar 

  • Matoba Y, Colucci WS, Fields BN, Smith TW (1993) The reovirus M1 gene determines the relative capacity of growth of reovirus in cultured bovine aortic endothelial cells. J Clin Invest 92:2883–2888

    PubMed  CAS  Google Scholar 

  • Matsuhisa T, Joklik WK (1974) Temperature-sensitive mutants of reovirus. V. Studies on the nature of the temperature-sensitive lesion of the group C mutant ts447. Virology 60:380–389

    PubMed  CAS  Google Scholar 

  • Mbisa JL, Becker MM, Zou S, Dermody TS, Brown EG (2000) Reovirus mu2 protein determines strain-specific differences in the rate of viral inclusion formation in L929 cells. Virology 272:16–26

    PubMed  CAS  Google Scholar 

  • McCown MF, Pekosz A (2005) The influenza Avirus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J Virol 79:3595–3605

    PubMed  CAS  Google Scholar 

  • McCrae MA, Joklik WK (1978) The nature of the polypeptide encoded by each of the 10 double-stranded RNA segments of reovirus type 3. Virology 89:578–593

    PubMed  CAS  Google Scholar 

  • McPhillips TH, Ramig RF (1984) Extragenic suppression of temperature-sensitive phenotype in reovirus: mapping suppressor mutations. Virology 135:428–439

    PubMed  CAS  Google Scholar 

  • Mendez II, She Y-M, Ens W, Coombs KM (2003) Digestion pattern of reovirus outer capsid protein sigma3 determined by mass spectrometry. Virology 311:289–304

    PubMed  CAS  Google Scholar 

  • Mertens PPC, Attoui H, Duncan R, Dermody TS (2005) Reoviridae. In: Fauquet CM, Mayo MA, Maniloff J et al (eds) Virus taxonomy. Eighth report of the International Committee on Taxonomy of Viruses Elsevier/Academic Press, London, pp 447–454

    Google Scholar 

  • Metcalf P, Cyrklaff M, Adrian M (1991) The three-dimensional structure of reovirus obtained by cryo-electron microscopy. EMBO J 10:3129–3136

    PubMed  CAS  Google Scholar 

  • Middleton JK, Severson TF, Chandran K, Gillian AL, Yin J, Nibert ML (2002) Thermostability of reovirus disassembly intermediates (ISVPs) correlates with genetic, biochemical, and thermodynamic properties of major surface proteinmu1. J Virol 76:1051–1061

    PubMed  CAS  Google Scholar 

  • Miller CL, Broering TJ, Parker JS, Arnold MM, Nibert ML (2003) Reovirus sigma NS protein localizes to inclusions through an association requiring the mu NS amino terminus. J Virol 77:4566–4576

    PubMed  CAS  Google Scholar 

  • Miller CL, Parker JSL, Dinoso JB, Piggott CDS, Perron MJ, Nibert ML (2004) Increased ubiquitination and other covariant phenotypes attributed to a strain-and temperature-dependent defect of reovirus core protein mu 2. J Virol 78:10291–10302

    PubMed  CAS  Google Scholar 

  • Moody MD, Joklik WK (1989) The function of reovirus proteins during the reovirus multiplication cycle: analysis using monoreassortants. Virology 173:437–446

    PubMed  CAS  Google Scholar 

  • Morgan EM, Zweerink HJ (1974) Reovirus morphogenesis. Corelike particles in cells infected at 39 degrees with wild-type reovirus and temperature-sensitive mutants of groups B and G. Virology 59:556–565

    PubMed  CAS  Google Scholar 

  • Morgan EM, Zweerink HJ (1975) Characterization of transcriptase and replicase particles isolated from reovirus-infected cells. Virology 68:455–466

    PubMed  CAS  Google Scholar 

  • Morozov SY (1989) A possible relationship of reovirus putative RNA polymerase to polymerases of positive-strand RNA viruses. Nucleic Acids Res 17:5394

    PubMed  CAS  Google Scholar 

  • Mustoe TA, Ramig RF, Sharpe AH, Fields BN (1978) A genetic map of reovirus. III. Assignment of the double-stranded RNA-positive mutant groups A, B, and G to genome segments. Virology 85:545–556

    PubMed  CAS  Google Scholar 

  • Nason EL, Samal SK, Prasad BVV (2000) Trypsin-induced structural transformation in aquareovirus. J Virol 74:6546–6555

    PubMed  CAS  Google Scholar 

  • Nibert ML, Schiff LA (2001) Reoviruses and their replication. In: Knipe DM, Howley M, Griffen DE et al (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1679–1728

    Google Scholar 

  • Nibert ML, Schiff LA, Fields BN (1991) Mammalian reoviruses contain a myristoylated structural protein. J Virol 65:1960–1967

    PubMed  CAS  Google Scholar 

  • Nibert ML, Odegard AL, Agosto MA, Chandran K, Schiff LA (2005) Putative auto-cleavage of reovirus mu1 protein in concert with outer-capsid disassembly and activation for membrane permeabilization. J Mol Biol 345:461–474

    PubMed  CAS  Google Scholar 

  • Noad L, Shou J, Coombs KM, Duncan R (2005) Sequences of avian reovirus M1, M2, and M3 genes and predicted structure/function of the encoded μ proteins. Virus Res Nov 14 [epub ahead of print]

    Google Scholar 

  • Noble S, Nibert ML (1997a) Characterization of an ATPase activity in reovirus cores and its genetic association with core-shell protein lambda1. J Virol 71:2182–2191

    PubMed  CAS  Google Scholar 

  • Noble S, Nibert ML (1997b) Core protein mu2 is a second determinant of nucleoside triphosphatase activities by reovirus cores. J Virol 71:7728–7735

    PubMed  CAS  Google Scholar 

  • Odegard AL, Chandran K, Liemann S, Harrison SC, Nibert ML (2003) Disulfide bonding among mu1 trimers in mammalian reovirus outer capsid: a late and reversible step in virion morphogenesis. J Virol 77:5389–5400

    PubMed  CAS  Google Scholar 

  • Odegard AL, Chandran K, Zhang X, Parker JSL, Baker TS, Nibert ML (2004) Putative autocleavage of outer capsid protein mu 1, allowing release of myristoylated peptide mu 1N during particle uncoating, is critical for cell entry by reovirus. J Virol 78:8732–8745

    PubMed  CAS  Google Scholar 

  • Offit PA (1994) Rotaviruses: immunological determinants of protection against infection and disease. Adv Virus Res 44:161–202

    PubMed  CAS  Google Scholar 

  • Olland AM, Jane-Valbuena J, Schiff LA, Nibert ML, Harrison SC (2001) Structure of the reovirus outer capsid and dsRNA-binding protein σ3 at 1.8 Å resolution. EMBO J 20:979–989

    PubMed  CAS  Google Scholar 

  • Parker JSL, Broering TJ, Kim J, Higgins DE, Nibert ML (2002) Reovirus core protein mu 2 determines the filamentous morphology of viral inclusion bodies by interacting with and stabilizing microtubules. J Virol 76:4483–4496

    PubMed  CAS  Google Scholar 

  • Patrick M, Duncan R, Coombs KM (2001) Generation and genetic characterization of avian reovirus temperature-sensitive mutants. Virology 284:113–122

    PubMed  CAS  Google Scholar 

  • Patton JT, Stacy-Phipps S (1986) Electrophoretic separation of the plus and minus strands of rotavirus SA11 double-stranded RNAs. J Virol Methods 13:185–190

    PubMed  CAS  Google Scholar 

  • Patton JT, Carpi RVD, Spencer E (2004) Replication and transcription of the rotavirus genome. Curr Pharma Design 10:3769–3777

    CAS  Google Scholar 

  • Poranen MM, Tuma R (2004) Self-assembly of double-stranded RNA bacteriophages. Virus Res 101:93–100

    PubMed  CAS  Google Scholar 

  • Poranen MM, Paatero AO, Tuma R, Bamford DH(2001) Self-assembly of a viral molecular machine from purified protein and RNA constituents. Mol Cell 7:845–854

    PubMed  CAS  Google Scholar 

  • Qiu T, Luongo CL (2003) Identification of two histidines necessary for reovirus mRNA guanylyltransferase activity. Virology 316:313–324

    PubMed  CAS  Google Scholar 

  • Rabin ER, Jenson AB (1967) Electron microscopic studies of animal viruses with emphasis on in vivo infections. Prog Med Virol 9:392–450

    PubMed  CAS  Google Scholar 

  • Ramig RF (1998) Suppression and reversion of mutant phenotype in reovirus. Curr Top Microbiol Immunol 233:109–135

    PubMed  CAS  Google Scholar 

  • Ramig RF, Fields BN (1979) Revertants of temperature-sensitive mutants of reovirus: evidence for frequent extragenic suppression. Virology 92:155–167

    PubMed  CAS  Google Scholar 

  • Ramig RF, Fields BN (1983) Genetics of reovirus. In: Jolik WK (ed) The Reoviridae. Plenum, New York, pp 197–228

    Google Scholar 

  • Ramig RF, Mustoe TA, Sharpe AH, Fields BN (1978) A genetic map of reovirus. II. Assignment of the double-stranded RNA-negative mutant groups C, D, and E to genome segments. Virology 85:531–534

    PubMed  CAS  Google Scholar 

  • Ramig RF, Ahmed R, Fields BN (1983) A genetic map of reovirus: assignment of the newly defined mutant groups H, I, and J to genome segments. Virology 125:299–313

    PubMed  CAS  Google Scholar 

  • Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6 Å resolution. Nature 404:960–967

    PubMed  CAS  Google Scholar 

  • Rhim JS, Jordan LE, Mayor HD (1962) Cytochemical, fluorescent-antibody and electron microscopic studies on the growth of reovirus (Echo 10) in tissue culture. Virology 17:342–355

    PubMed  CAS  Google Scholar 

  • Rodgers SE, Connolly JL, Chappell JD, Dermody TS (1998) Reovirus growth in cell culture does not require the full complement of viral proteins: identification of a σ1s-null mutant. J Virol 72:8597–8604

    PubMed  CAS  Google Scholar 

  • Roner MR (1999) Rescue systems for dsRNA viruses of higher organisms. Adv Virus Res 53:355–367

    PubMed  CAS  Google Scholar 

  • Roner MR, Joklik WK(2001) Reovirus reverse genetics: Incorporation of the CAT gene into the reovirus genome. Proc Natl Acad Sci U S A 98:8036–8041

    PubMed  CAS  Google Scholar 

  • Roner MR, Sutphin LA, Joklik WK (1990) Reovirus RNA is infectious. Virology 179:845–852

    PubMed  CAS  Google Scholar 

  • Roner MR, Lin PN, Nepluev I, Kong LJ, Joklik WK (1995) Identification of signals required for the insertion of heterologous genome segments into the reovirus genome. Proc Natl Acad Sci U S A 92:12362–12366

    PubMed  CAS  Google Scholar 

  • Roner MR, Nepliouev I, Sherry B, Joklik WK(1997) Construction and characterization of a reovirus double temperature-sensitive mutant. Proc Natl Acad Sci U S A 94:6826–6830

    PubMed  CAS  Google Scholar 

  • Roner MR, Bassett K, Roehr, J (2004) Identification of the 5′ sequences required for incorporation of an engineered ssRNA into the reovirus genome. Virology 329:348–360

    PubMed  CAS  Google Scholar 

  • Rouault E, Lemay G (2003) Incorporation of epitope-tagged viral sigma 3 proteins to reovirus virions. Can J Microbiol 49:407–417

    PubMed  CAS  Google Scholar 

  • Roy P (2001) Orbiviruses. In: Knipe DM, Howley M, Griffen DE et al (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1835–1869

    Google Scholar 

  • Schiff LA (1998) Reovirus capsid proteins sigma 3 andmu 1: interactions that influence viral entry, assembly, and translational control. Curr Top Microbiol Immunol 233:167–183

    PubMed  CAS  Google Scholar 

  • Schiff LA, Nibert ML, Co MS, Brown EG, Fields BN (1988) Distinct binding sites for zinc and double-stranded RNA in the reovirus outer capsid protein sigma 3. Mol Cell Biol 8:273–283

    PubMed  CAS  Google Scholar 

  • Schildgen O, Graper S, Blumel J, Matz B (2005) Genome replication and progeny virion production of herpes simplex virus type 1 mutants with temperature-sensitive lesions in the origin-binding protein. J Virol 79:7273–7278

    PubMed  CAS  Google Scholar 

  • Schmechel S, Chute M, Skinner P, Anderson R, Schiff L (1997) Preferential translation of reovirus mRNA by a sigma3-dependent mechanism. Virology 232:62–73

    PubMed  CAS  Google Scholar 

  • Schwartzberg PL, Roth MJ, Tanese N, Goff SP (1993) Analysis of a temperature-sensitive mutation affecting the integration protein of Moloney murine leukemia virus. Virology 192:673–678

    PubMed  CAS  Google Scholar 

  • Sekellick MJ, Carra SA, Bowman A, Hopkins DA, Marcus PI (2000) Transient resistance of influenza virus to interferon action attributed to random multiple packaging and activity of NS genes. J Interferon Cytokine Res 20:963–970

    PubMed  CAS  Google Scholar 

  • Sharpe AH, Fields BN (1981) Reovirus inhibition of cellular DNA synthesis: role of the S1 gene. J Virol 38:389–392

    PubMed  CAS  Google Scholar 

  • Sharpe AH, Fields BN(1982) Reovirus inhibition of cellular RNA and protein synthesis: role of the S4 gene. Virology 122:381–391

    PubMed  CAS  Google Scholar 

  • Shatkin AJ (1974) Methylated messenger RNA synthesis in vitro by purified reovirus. Proc Natl Acad Sci U S A 71:3204–3207

    PubMed  CAS  Google Scholar 

  • Shatkin AJ, Kozak M (1983) Biochemical aspects of reovirus transcription and translation. In: Jolik WK (ed) The Reoviridae. Plenum, New York, pp 79–106

    Google Scholar 

  • Shatkin AJ, LaFiandra AJ (1972) Transcription by infectious subviral particles of reovirus. J Virol 10:698–706

    PubMed  CAS  Google Scholar 

  • Shepard DA, Ehnstrom JG, Schiff LA (1995) Association of reovirus outer capsid proteins sigma 3 and mu 1 causes a conformational change that renders sigma 3 protease sensitive. J Virol 69:8180–8184

    PubMed  CAS  Google Scholar 

  • Shepard DA, Ehnstrom JG, Skinner PJ, Schiff LA (1996) Mutations in the zinc-binding motif of the reovirus capsid protein delta 3 eliminate its ability to associate with capsid protein mu 1. J Virol 70:2065–2068

    PubMed  CAS  Google Scholar 

  • Sherry B, Fields BN (1989) The reovirus M1 gene, encoding a viral core protein, is associated with themyocarditic phenotype of a reovirus variant. J Virol 63:4850–4856

    PubMed  CAS  Google Scholar 

  • Shing M, Coombs KM (1996) Assembly of the reovirus outer capsid requires mu 1/sigma 3 interactions which are prevented by misfolded sigma 3 protein in temperature-sensitive mutant tsG453. Virus Res 46:19–29

    PubMed  CAS  Google Scholar 

  • Silverstein SC, Schonberg M, Levin DH, Acs G (1970) The reovirus replicative cycle: conservation of parental RNA and protein. Proc Natl Acad Sci U S A 67:275–281

    PubMed  CAS  Google Scholar 

  • Silverstein SC, Astell C, Levin DH, Schonberg M, Acs G (1972) The mechanisms of reovirus uncoating and gene activation in vivo. Virology 47:797–806

    PubMed  CAS  Google Scholar 

  • Skup D, Millward S (1980) Reovirus-induced modification of cap-dependent translation in infected L cells. Proc Natl Acad Sci U S A 77:152–156

    PubMed  CAS  Google Scholar 

  • Smith JA, Schmechel SC, Williams BR, Silverman RH, Schiff LA (2005) Involvement of the interferon-regulated antiviral proteins PKR and RNase L in reovirus-induced shutoff of cellular translation. J Virol 79:2240–2250

    PubMed  CAS  Google Scholar 

  • Smith RE, Zweerink HJ, Joklik WK (1969) Polypeptide components of virions, top component and cores of reovirus type 3. Virology 39:791–810

    PubMed  CAS  Google Scholar 

  • Spandidos DA, Krystal G, Graham AF (1976) Regulated transcription of the genomes of defective virions and temperature-sensitivemutants of reovirus. J Virol 18:7–19

    PubMed  CAS  Google Scholar 

  • Spencer SM, Sgro JY, Dryden KA, Baker TS, Nibert ML (1997) IRIS explorer software for radial-depth cueing reovirus particles and other macromolecular structures determined by cryoelectron microscopy and image reconstruction. J Struct Biol 120:11–21

    PubMed  CAS  Google Scholar 

  • Stamatos NM, Gomatos PJ (1982) Binding to selected regions of reovirus mRNAs by a nonstructural reovirus protein. Proc Natl Acad Sci U S A 79:3457–3461

    PubMed  CAS  Google Scholar 

  • Starnes MC, Joklik WK (1993) Reovirus protein lambda 3 is a poly(C)-dependent poly(G) polymerase. Virology 193:356–366

    PubMed  CAS  Google Scholar 

  • Strong JE, Leone G, Duncan R, Sharma RK, Lee PW (1991) Biochemical and biophysical characterization of the reovirus cell attachment protein sigma 1: evidence that it is a homotrimer. Virology 184:23–32

    PubMed  CAS  Google Scholar 

  • Sturzenbecker LJ, Nibert M, Furlong D, Fields BN (1987) Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle. J Virol 61:2351–2361

    PubMed  CAS  Google Scholar 

  • Tao Y, Farsetta DL, Nibert ML, Harrison SC (2002) RNA synthesis in a cage—structural studies of reovirus polymerase lambda3. Cell 111:733–745

    PubMed  CAS  Google Scholar 

  • Taraporewala ZF, Patton JT (2004) Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae. Virus Res 101:57–66

    PubMed  CAS  Google Scholar 

  • Tillotson L, Shatkin AJ (1992) Reovirus polypeptide sigma 3 and N-terminal myristoylation of polypeptide mu 1 are required for site-specific cleavage to mu 1C in transfected cells. J Virol 66:2180–2186

    PubMed  CAS  Google Scholar 

  • Tosteson MT, Nibert ML, Fields BN (1993) Ion channels induced in lipid bilayers by subvirion particles of the nonenveloped mammalian reoviruses. Proc Natl Acad Sci U S A 90:10549–10552

    PubMed  CAS  Google Scholar 

  • Tyler KL (2001) Mammalian reoviruses. In: Knipe DM, Howley M, Griffen DE et al (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1729–1745

    Google Scholar 

  • Tyler KL, McPhee DA, Fields BN (1986) Distinct pathways of viral spread in the host determined by reovirus S1 gene segment. Science 233:770–774

    PubMed  CAS  Google Scholar 

  • Tyler KL, Squier MK, Rodgers SE, Schneider BE, Oberhaus SM, Grdina TA, Cohen JJ, Dermody TS (1995) Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment protein sigma 1. J Virol 69:6972–6979

    PubMed  CAS  Google Scholar 

  • Ward RL, Shatkin AJ (1972) Association of reovirusm RNA with viral proteins: a possible mechanism for linking the genome segments. Arch Biochem Biophys 152:378–384

    PubMed  CAS  Google Scholar 

  • Ward R, Banerjee AK, LaFiandra A, Shatkin AJ (1972) Reovirus-specific ribonucleic acid from polysomes of infected L cells. J Virol 9:61–69

    PubMed  CAS  Google Scholar 

  • Watanabe T, Watanabe S, Noda T, Fujii Y, Kawaoka Y (2003) Exploitation of nucleic acid packaging signals to generate a novel influenza virus-based vector stably expressing two foreign genes. J Virol 77:10575–10583

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Kudo H, Graham AF (1967) Selective inhibition of reovirus ribonucleic acid synthesis by cycloheximide. J Virol 1:36–44

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Millward S, Graham AF (1968) Regulation of transcription of the reovirus genome. J Mol Biol 36:107–123

    PubMed  CAS  Google Scholar 

  • Weiner HL, Drayna D, Averill D-RJ, Fields BN (1977) Molecular basis of reovirus virulence: role of the S1 gene. Proc Natl Acad Sci U S A 74:5744–5748

    PubMed  CAS  Google Scholar 

  • Weiner HL, Ramig RF, Mustoe TA, Fields BN (1978) Identification of the gene coding for the hemagglutinin of reovirus. Virology 86:581–584

    PubMed  CAS  Google Scholar 

  • Weiner HL, Powers ML, Fields BN (1980) Absolute linkage of virulence and central nervous system cell tropism of reoviruses to viral hemagglutinin. J Infect Dis 141:609–616

    PubMed  CAS  Google Scholar 

  • White CK, Zweerink HJ (1976) Studies on the structure of reovirus cores: selective removal of polypeptide lambda 2. Virology 70:171–180

    PubMed  CAS  Google Scholar 

  • Wiener JR, Joklik WK (1987) Comparisonof the reovirus serotype 1, 2, and 3 S3 genome segments encoding the nonstructural protein sigma NS. Virology 161:332–339

    PubMed  CAS  Google Scholar 

  • Wiener JR, Joklik WK (1989) The sequences of the reovirus serotype 1, 2, and 3 L1 genome segments and analysis of the mode of divergence of the reovirus serotypes. Virology 169:194–203

    PubMed  CAS  Google Scholar 

  • Wiener JR, Bartlett JA, Joklik WK (1989a) The sequences of reovirus serotype 3 genome segments M1 and M3 encoding the minor protein mu 2 and the major nonstructural protein mu NS, respectively. Virology 169:293–304

    PubMed  CAS  Google Scholar 

  • Wiener JR, McLaughlin T, Joklik WK (1989b) The sequences of the S2 genome segments of reovirus serotype 3 and of the dsRNA-negative mutant ts447. Virology 170:340–341

    PubMed  CAS  Google Scholar 

  • Wilson GA, Morrison LA, Fields BN (1994) Association of the reovirus S1 gene with serotype 3-induced biliary atresia in mice. J Virol 68:6458–6465

    PubMed  CAS  Google Scholar 

  • Xu P, Miller SE, Joklik WK (1993) Generation of reovirus core-like particles in cells infected with hybrid vaccinia viruses that express genome segments L1, L2, L3, and S2. Virology 197:726–731

    PubMed  CAS  Google Scholar 

  • Xu W, Patrick MK, Hazelton PR, Coombs KM (2004) Avian reovirus temperature-sensitive mutant tsA12 has a lesion in major core protein sigma A and is defective in assembly. J Virol 78:11142–11151

    PubMed  CAS  Google Scholar 

  • Xu W, Tran AT, Patrick MK, Coombs KM (2005) Assignment of avian reovirus temperature-sensitive mutant recombination groups B, C, and D to genome segments. Virology 338:227–235

    PubMed  CAS  Google Scholar 

  • Yeager M, Weiner SG, Coombs KM (1996) Transcriptionally active reovirus core particles visualized by electron cryo-microscopy and image reconstruction. Biophys J 70:484

    Google Scholar 

  • Yin P, Cheang M, Coombs KM (1996) The M1 gene is associated with differences in the temperature optimum of the transcriptase activity in reovirus core particles. J Virol 70:1223–1227

    PubMed  CAS  Google Scholar 

  • Yin P, Keirstead ND, Broering TJ, Arnold MM, Parker JSL, Nibert ML, Coombs KM (2004) Comparisons of the M1 genome segments and encoded μ2 proteins of different reovirus isolates. Virol J 1:6

    PubMed  Google Scholar 

  • Zhang X, Walker SB, Chipman PR, Nibert ML, Baker TS (2003) Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 angstrom. Nature Struct Biol 10:1011–1018

    PubMed  CAS  Google Scholar 

  • Zhang X, Tang J, Walker SB, O’Hara D, Nibert ML, Duncan R, Baker TS (2005) Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology 343:25–35

    PubMed  CAS  Google Scholar 

  • Zou S, Brown EG (1992) Identification of sequence elements containing signals for replication and encapsidation of the reovirus M1 genome segment. Virology 186:377–388

    PubMed  CAS  Google Scholar 

  • Zou S, Brown EG (1996) Stable expression of the reovirus mu2 protein in mouse L cells complements the growth of a reovirus ts mutant with a defect in its M1 gene. Virology 217:42–48

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Coombs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coombs, K.M. (2006). Reovirus Structure and Morphogenesis. In: Roy, P. (eds) Reoviruses: Entry, Assembly and Morphogenesis. Current Topics in Microbiology and Immunology, vol 309. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30773-7_5

Download citation

Publish with us

Policies and ethics