Skip to main content

Compact Error-Resilient Computational DNA Tilings

  • Chapter

Part of the book series: Natural Computing Series ((NCS))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Barish, P. W.K. Rothemund, and E. Winfree. Algorithmic self-assembly of a binary counter using DNA tiles. 2005. In preparation.

    Google Scholar 

  2. B.A. Bondarenko. Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and Applications. The Fibonacci Association, 1993. Translated from Russion and edited by R.C. Bollinger.

    Google Scholar 

  3. N. Chelyapov, Y. Brun, M. Gopalkrishnan, D. Reishus, B. Shaw, and L. Adleman. DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc., 126:13924–13925, 2004.

    Article  Google Scholar 

  4. H.L. Chen, Q. Cheng, A. Goel, M.D. Huang, and P.M. de Espanes. Invadable self-assembly: Combining robustness with efficiency. In Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 890–899, 2004.

    Google Scholar 

  5. H.L. Chen and A. Goel. Error free self-assembly using error prone tiles. In DNA Based Computers 10, pages 274–283, 2004.

    Google Scholar 

  6. K. Fujibayashi and S. Murata. A method for error suppression for self-assembling DNA tiles. In DNA Based Computing 10, pages 284–293, 2004.

    Google Scholar 

  7. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, and N.C. Seeman. The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc., 122:1848–1860, 2000.

    Article  Google Scholar 

  8. M.G. Lagoudakis and T.H. LaBean. 2-D DNA self-assembly for satisfiability. In DNA Based Computers V, volume 54 of DIMACS, pages 141–154. American Mathematical Society, 2000.

    MathSciNet  Google Scholar 

  9. D. Liu, M.S. Wang, Z.X. Deng, R. Walulu, and C.D. Mao. Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc., 126:2324–2325, 2004.

    Article  Google Scholar 

  10. D. Liu, S.H. Park, J.H. Reif, and T.H. LaBean. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl. Acad. Sci. USA, 101:717–722, 2004.

    Article  Google Scholar 

  11. C. Mao, T.H. LaBean, J.H. Reif, and N.C. Seeman. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature, 407:493–496, 2000.

    Article  Google Scholar 

  12. C. Mao, W. Sun, and N.C. Seeman. Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc., 121:5437–5443, 1999.

    Article  Google Scholar 

  13. J.H. Reif. Local parallel biomolecular computation. In H. Rubin and D. H. Wood, editors, DNA-Based Computers 3, volume 48 of DIMACS, pages 217–254. American Mathematical Society, 1999.

    Google Scholar 

  14. P.W.K. Rothemund and E. Winfree. The program-size complexity of self-assembled squares (extended abstract). In Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages 459–468. ACM Press, 2000.

    Google Scholar 

  15. P.W.K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D.K. Fygenson, and E. Winfree. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc., 126:16344–16353, 2004.

    Article  Google Scholar 

  16. P.W.K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2 (12), 2:e424, 2004.

    Article  Google Scholar 

  17. R. Schulman and E. Winfree. Programmable control of nucleation for algorithmic self-assembly. In DNA Based Computers 10, LNCS, 2005.

    Google Scholar 

  18. N.C. Seeman. DNA in a material world. Nature, 421:427–431, 2003.

    Article  MathSciNet  Google Scholar 

  19. J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Autonomous Studies, pages 43–98, 1956.

    Google Scholar 

  20. H. Wang. Proving theorems by pattern recognition II. Bell Systems Technical Journal, 40:1–41, 1961.

    Google Scholar 

  21. E. Winfree. Complexity of restricted and unrestricted models of molecular computation. In R. J. Lipton and E. B. Baum, editors, DNA Based Computers 1, volume 27 of DIMACS, pages 187–198. American Mathematical Society, 1996.

    Google Scholar 

  22. E. Winfree. On the computational power of DNA annealing and ligation. In R. J. Lipton and E. B. Baum, editors, DNA Based Computers 1, volume 27 of DIMACS, pages 199–221. American Mathematical Society, 1996.

    Google Scholar 

  23. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, 1998.

    Google Scholar 

  24. E. Winfree. Simulation of computing by self-assembly. Technical Report 1998.22, Caltech, 1998.

    Google Scholar 

  25. E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction for algorithmic self-assembly. In DNA Based Computers 9, volume 2943 of LNCS, pages 126–144, 2004.

    MathSciNet  Google Scholar 

  26. E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-assembly of two-dimensional DNA crystals. Nature, 394(6693):539–544, 1998.

    Article  Google Scholar 

  27. E. Winfree, X. Yang, and N.C. Seeman. Universal computation via self-assembly of DNA: Some theory and experiments. In L.F. Landweber and E.B. Baum, editors, DNA Based Computers II, volume 44 of DIMACS, pages 191–213. American Mathematical Society, 1999.

    Google Scholar 

  28. H. Yan, L. Feng, T.H. LaBean, and J.H. Reif. Parallel molecular computation of pair-wise XOR using DNA string tile. J. Am. Chem. Soc., 125(47), 2003.

    Google Scholar 

  29. H. Yan, T.H. LaBean, L. Feng, and J.H. Reif. Directed nucleation assembly of DNA tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA, 100(14):8103–8108, 2003.

    Article  Google Scholar 

  30. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 301(5641):1882–1884, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reif, J.H., Sahu, S., Yin, P. (2006). Compact Error-Resilient Computational DNA Tilings. In: Chen, J., Jonoska, N., Rozenberg, G. (eds) Nanotechnology: Science and Computation. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30296-4_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-30296-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30295-7

  • Online ISBN: 978-3-540-30296-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics